問題文全文(内容文):
高校受験対策・図形30
Q
図1のように、$AB=AC$である二等辺三角形$ABC$があります。
次の各問いに答えなさい。
①
図2のように、$AB=9$、$BC=6$のとき、辺$AB$上に$BE=3$となるとなる点$E$をとり、
辺$BC$上に$\angle BAC=\angle BDE$となる点$D$をとります。
このとき線分$BD$の長さを求めなさい。
②辺$BC$に平行な直線と辺$AB$、$AC$の交点を$F$、$G$とするとき、 $△AFG$の面積が$△ABC$の面積の半分になるような点$F$および点$G$を、コンパスと定規を使って作図しなさい。
ただし作図に使った線は消さないこと。
高校受験対策・図形30
Q
図1のように、$AB=AC$である二等辺三角形$ABC$があります。
次の各問いに答えなさい。
①
図2のように、$AB=9$、$BC=6$のとき、辺$AB$上に$BE=3$となるとなる点$E$をとり、
辺$BC$上に$\angle BAC=\angle BDE$となる点$D$をとります。
このとき線分$BD$の長さを求めなさい。
②辺$BC$に平行な直線と辺$AB$、$AC$の交点を$F$、$G$とするとき、 $△AFG$の面積が$△ABC$の面積の半分になるような点$F$および点$G$を、コンパスと定規を使って作図しなさい。
ただし作図に使った線は消さないこと。
単元:
#数学(中学生)#高校入試過去問(数学)
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
高校受験対策・図形30
Q
図1のように、$AB=AC$である二等辺三角形$ABC$があります。
次の各問いに答えなさい。
①
図2のように、$AB=9$、$BC=6$のとき、辺$AB$上に$BE=3$となるとなる点$E$をとり、
辺$BC$上に$\angle BAC=\angle BDE$となる点$D$をとります。
このとき線分$BD$の長さを求めなさい。
②辺$BC$に平行な直線と辺$AB$、$AC$の交点を$F$、$G$とするとき、 $△AFG$の面積が$△ABC$の面積の半分になるような点$F$および点$G$を、コンパスと定規を使って作図しなさい。
ただし作図に使った線は消さないこと。
高校受験対策・図形30
Q
図1のように、$AB=AC$である二等辺三角形$ABC$があります。
次の各問いに答えなさい。
①
図2のように、$AB=9$、$BC=6$のとき、辺$AB$上に$BE=3$となるとなる点$E$をとり、
辺$BC$上に$\angle BAC=\angle BDE$となる点$D$をとります。
このとき線分$BD$の長さを求めなさい。
②辺$BC$に平行な直線と辺$AB$、$AC$の交点を$F$、$G$とするとき、 $△AFG$の面積が$△ABC$の面積の半分になるような点$F$および点$G$を、コンパスと定規を使って作図しなさい。
ただし作図に使った線は消さないこと。
投稿日:2019.12.21