福田の数学〜慶應義塾大学2024年薬学部第1問(4)〜空間図形の計量 - 質問解決D.B.(データベース)

福田の数学〜慶應義塾大学2024年薬学部第1問(4)〜空間図形の計量

問題文全文(内容文):
$\Large\boxed{1}$ (4)Oを原点とする$xyz$空間に点A(0,0,$\sqrt 6$)があり、$y$軸上の点B, C($t$,$\frac{t}{\tan\theta}$,0)を∠OBA=30°,∠BAC=45°,∠ACB=60° を満たすようにおく。ただし$t$は$t$>0 を満たす実数の定数、$\theta$は0°<$\theta$<90°を満たす実数の定数とする。
(i)$|\overrightarrow{BC}|$=$\boxed{\ \ ケ\ \ }$である。
(ii)$|\overrightarrow{OC}|^2$=$\boxed{\ \ コ\ \ }$である。
(iii)$\theta$は$\tan^2\theta$の値が$\boxed{\ \ サ\ \ }$となる実数である。
単元: #数Ⅰ#大学入試過去問(数学)#図形と計量#三角比(三角比・拡張・相互関係・単位円)#三角比への応用(正弦・余弦・面積)#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{1}$ (4)Oを原点とする$xyz$空間に点A(0,0,$\sqrt 6$)があり、$y$軸上の点B, C($t$,$\frac{t}{\tan\theta}$,0)を∠OBA=30°,∠BAC=45°,∠ACB=60° を満たすようにおく。ただし$t$は$t$>0 を満たす実数の定数、$\theta$は0°<$\theta$<90°を満たす実数の定数とする。
(i)$|\overrightarrow{BC}|$=$\boxed{\ \ ケ\ \ }$である。
(ii)$|\overrightarrow{OC}|^2$=$\boxed{\ \ コ\ \ }$である。
(iii)$\theta$は$\tan^2\theta$の値が$\boxed{\ \ サ\ \ }$となる実数である。
投稿日:2024.03.24

<関連動画>

大阪公立大 7の80乗の下5桁

アイキャッチ画像
単元: #数Ⅰ#大学入試過去問(数学)#数と式#式の計算(整式・展開・因数分解)#学校別大学入試過去問解説(数学)#数学(高校生)#大阪公立大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
$ 7^{80}$の下5桁を求めよ.

大阪公立大過去問
この動画を見る 

【高校数学】  数Ⅰ-51  2次関数の決定③

アイキャッチ画像
単元: #数Ⅰ#2次関数#2次関数とグラフ#数学(高校生)
指導講師: とある男が授業をしてみた
問題文全文(内容文):
◎次の条件を満たす放物線の方程式を求めよう。

①放物線$y=2x^2-3x$を平行移動した曲線で、2点(1.-1)(2.0)を通る。
②放物線$y=x^2-3x+4$を平行移動した曲線で、点(2.4)を通り、頂点が 直線$y=2x+1$上にある。
この動画を見る 

福田のわかった数学〜高校1年生010〜2次関数の最大最小(3)

アイキャッチ画像
単元: #数Ⅰ#2次関数#2次関数とグラフ#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
数学$\textrm{I}$ 2次関数の最大最小(3)
$y=(x^2-2ax)^2+4(x^2-2ax)$
の最小値が$-4$となるような定数$a$
の値の範囲を求めよ。
この動画を見る 

大学入試問題#41 東海大学医学部(2021) 因数分解

アイキャッチ画像
単元: #数Ⅰ#大学入試過去問(数学)#数と式#式の計算(整式・展開・因数分解)#学校別大学入試過去問解説(数学)#数学(高校生)#東海大学
指導講師: ますただ
問題文全文(内容文):
$(a+b+c)^3-a^3-b^3-c^3$を因数分解せよ。

出典:2021年東海大学医学部 入試問題
この動画を見る 

二次方程式の応用 三田学園

アイキャッチ画像
単元: #2次関数#2次方程式と2次不等式#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
次の2つの二次方程式の共通な解が$x=-2$だけになるときa,bの値を求めよ
$x^{2}-(b+2)x-b^{2}=0$
$x^{2}+ax+2b=0$
この動画を見る 
PAGE TOP