【高校数学】 数Ⅰ-84 三角比⑨ - 質問解決D.B.(データベース)

【高校数学】  数Ⅰ-84  三角比⑨

問題文全文(内容文):
$0° \leqq \theta \leqq 180°$とする。次の不等式を満たす
$\theta $の範囲を求めよう。

①$\sin \theta \gt \displaystyle \frac{\sqrt{ 3 }}{2}$

②$\cos \theta \lt \displaystyle \frac{1}{2}$

③$\tan \theta \geqq \sqrt{ 3 }$

④$2\sin \theta-1\leqq0$

⑤$2\cos \theta+ \sqrt{ 3 } \gt 0$

⑥$\tan \theta +1 \geqq 0$

単元: #数Ⅰ#図形と計量#三角比(三角比・拡張・相互関係・単位円)#三角比への応用(正弦・余弦・面積)#数学(高校生)
指導講師: とある男が授業をしてみた
問題文全文(内容文):
$0° \leqq \theta \leqq 180°$とする。次の不等式を満たす
$\theta $の範囲を求めよう。

①$\sin \theta \gt \displaystyle \frac{\sqrt{ 3 }}{2}$

②$\cos \theta \lt \displaystyle \frac{1}{2}$

③$\tan \theta \geqq \sqrt{ 3 }$

④$2\sin \theta-1\leqq0$

⑤$2\cos \theta+ \sqrt{ 3 } \gt 0$

⑥$\tan \theta +1 \geqq 0$

投稿日:2014.10.25

<関連動画>

【定理・公式の使い方を整理!】三角比の定理の使い方を総整理!〔高校数学 数学〕

アイキャッチ画像
単元: #数Ⅰ#図形と計量#三角比(三角比・拡張・相互関係・単位円)#三角比への応用(正弦・余弦・面積)#数学(高校生)
指導講師: 3rd School
問題文全文(内容文):
1⃣
$\tan\theta=\sqrt{ 2 }$のとき、$\cos\theta$と$\sin\theta$を求めなさい($\theta$は鋭角)

2⃣
次の三角比を$90^{ \circ }$以下の角の三角比で表せ
(1)$\sin110^{ \circ }$
(2)$\cos120^{ \circ }$
(3)$\tan130^{ \circ }$

3⃣
動画内の図の$\triangle ABC$において$a$の長さを求め、面積も求めなさい
この動画を見る 

福田の一夜漬け数学〜図形と方程式〜軌跡(1)軌跡の鉄則、高校2年生

アイキャッチ画像
単元: #数Ⅰ#数Ⅱ#2次関数#2次関数とグラフ#図形と方程式#軌跡と領域#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{1}}$ 放物線$y=x^2-2(a+1)x+2a$ $\cdots$①の頂点を$P$とする。$a$が$1$より大きい
実数を動くとき、点Pの軌跡を求めよ。
この動画を見る 

部分分数分解

アイキャッチ画像
単元: #数Ⅰ#数と式#式の計算(整式・展開・因数分解)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
$\frac{1}{2} + \frac{1}{6} + \frac{1}{12} +\frac{1}{20}$
この動画を見る 

他の問題もあり!

アイキャッチ画像
単元: #数Ⅰ#数と式#集合と命題(集合・命題と条件・背理法)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
x.y.zを整数とする。
次の条件を満たす整数の組(x,y,z)は全部で何組か?
(1)$1 \leqq x \leqq 5$ , $1 \leqq y \leqq 5$ , $1 \leqq z \leqq 5$
(2)$1 \leqq x \lt y \lt z \leqq 5$
(3)$x+y+z = 5$ $ \quad x \geqq 1 ,y \geqq 1,z \geqq 1$
(4)$x+y+z = 5$ $ \quad x \geqq 0 ,y \geqq 0,z \geqq 0$
(5)$1 \leqq x \leqq y \leqq z \leqq 5$

大阪経済大学
この動画を見る 

【数Ⅰ】【2次関数】2次関数の最大最小場合分け2 ※問題文は概要欄

アイキャッチ画像
単元: #数Ⅰ#2次関数#2次関数とグラフ#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
$a$は定数とする。関数$y=3x²-6ax+2~~(0\leqq x \leqq 2)$について、次の問いに答えよ。
(1) 最小値を求めよ。
(2) 最大値を求めよ。
この動画を見る 
PAGE TOP