【極限の応用!】特殊な関数の極限の求め方を解説!【数学III】 - 質問解決D.B.(データベース)

【極限の応用!】特殊な関数の極限の求め方を解説!【数学III】

問題文全文(内容文):
特殊な関数の極限の求め方を解説します。
単元: #関数と極限#関数の極限#数学(高校生)#数Ⅲ
指導講師: 3rd School
問題文全文(内容文):
特殊な関数の極限の求め方を解説します。
投稿日:2023.04.26

<関連動画>

【高校数学】分数関数と一次関数の不等式をグラフを使わない裏ワザ!②

アイキャッチ画像
単元: #関数と極限#数学(高校生)#数Ⅲ
指導講師: 理数個別チャンネル
問題文全文(内容文):
次の不等式を解け。
$\displaystyle\frac{2x}{x+1}≧x+6$
この動画を見る 

弘前大(医)3次方程式 極限 Japanese university entrance exam questions

アイキャッチ画像
単元: #大学入試過去問(数学)#関数と極限#微分とその応用#関数の極限#微分法#数学(高校生)#弘前大学#数Ⅲ
指導講師: 鈴木貫太郎
問題文全文(内容文):
弘前大学過去問題
n自然数
$x^3+3nx^2-(3n+2)=0$
(1)全ての自然数nについて正の解をただ1つしかもたないことを示せ。
(2)各自然数nに対して正の解を$a_n$とする。
 $\displaystyle\lim_{n \to \infty}a_n$を求めよ。
この動画を見る 

林俊介 語りかける東大数学

アイキャッチ画像
単元: #対数関数#関数と極限
指導講師: 鈴木貫太郎
問題文全文(内容文):
$
\begin{eqnarray}
&&(1)n\in\mathbb{ Z }_+\\
&&g(x):=
\left\{
\begin{array}{l}
\frac{\cos(\pi x)+1}{2}(|x|\leq1) \\
0(|x|>1)
\end{array}
\right.\\
&&f(x):連続 p,q\in\mathbb{ R }\\
&&|x|\leqでつねにp\leq f(x)\leq q
&p\leq n \int_{-1}^1 g(nx) f(x)dx \leq qを示せ

\end{eqnarray}
$

$
\begin{eqnarray}
&&(2)h(x) :=
\left\{
\begin{array}{l}
-\frac{\pi}{2}\sin(\pi x)&(|x| \leq 1)&\\
0&(|x|>1)&
\end{array}
\right.\\
&&次の極限を求めよ
\displaystyle\lim_{ n \to \infty } n^2 \int_{-1}^{1}h(nx)\log(1+e^{x+1})dx\\
\end{eqnarray}\\
$

$
\begin{eqnarray}
&&(1)g(x)=
\left\{
\begin{array}{l}
\frac{\cos(\pi x)+1}{2}(|x|\leq1)
0(|x|>1)
\end{array}
\right.\\
&&p\leq n\int_{-1}^{1}g(nx)f(x)dx \leq q

\end{eqnarray}
$
この動画を見る 

極限の基本問題 立教大

アイキャッチ画像
単元: #関数と極限#関数(分数関数・無理関数・逆関数と合成関数)#関数の極限#数学(高校生)#数Ⅲ
指導講師: 鈴木貫太郎
問題文全文(内容文):
立教大学過去問題
$\displaystyle\lim_{x \to 0} \frac{\sin(1-\cos x)}{x^2}$
この動画を見る 

【数Ⅲ】極限:岐阜大の類題! 複素数z[n]をz[1]=1,z[n+1]=i/2(z[n]+1)(n=1,2,3,···)により定める。z[n]の実部x[n],虚部y[n]を求めよ。

アイキャッチ画像
単元: #関数と極限#数列の極限#数学(高校生)#数Ⅲ
指導講師: 理数個別チャンネル
問題文全文(内容文):
複素数z[n]をz[1]=1,z[n+1]=i/2(z[n]+1)(n=1,2,3,···)により定める。z[n]の実部x[n],虚部y[n]を求めよ。
この動画を見る 
PAGE TOP