【理数個別の過去問解説】2021年度 神奈川大学給費生入試 文系数学 第1問解説 - 質問解決D.B.(データベース)

【理数個別の過去問解説】2021年度 神奈川大学給費生入試 文系数学 第1問解説

問題文全文(内容文):
次の空欄(a)~(d)を適当に補え。
(1) iを虚数単位とする。複素数$(2-i)^2$の実部は$(a)$である。
(2) $\theta$がすべての実数を動くとき、$\cos\theta+\cos2\theta$の最小値は$(b)$である。
(3) コインを5回投げて、すべて同じ面がでる確率をpとする。このとき$\log_2 p$は$(c)$である。
(4) xの関数 f(x)は$\displaystyle \int_{0}^{2}(f(t)+2t)dt=x^3+x^2+x$を満たす。このとき、$f(x)=(d)$である。

チャプター:

0:00 オープニング
0:15 (1)の解き方
1:39 (2)の解き方
3:34 (3)の解き方
4:57 (4)の解き方
6:29 まとめ

単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#神奈川大学#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
次の空欄(a)~(d)を適当に補え。
(1) iを虚数単位とする。複素数$(2-i)^2$の実部は$(a)$である。
(2) $\theta$がすべての実数を動くとき、$\cos\theta+\cos2\theta$の最小値は$(b)$である。
(3) コインを5回投げて、すべて同じ面がでる確率をpとする。このとき$\log_2 p$は$(c)$である。
(4) xの関数 f(x)は$\displaystyle \int_{0}^{2}(f(t)+2t)dt=x^3+x^2+x$を満たす。このとき、$f(x)=(d)$である。

投稿日:2022.01.01

<関連動画>

慶應(類)積分 Mathematics Japanese university entrance exam

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#学校別大学入試過去問解説(数学)#不定積分・定積分#慶應義塾大学#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$f(x)=3\displaystyle \int_{x-1}^{ x }(t+|t|)(t+|t|-1)dt$

(1)
$y=f(x)$のグラフをかけ

(2)
$y=f(x)$と$x$軸とで囲まれる面積を求めよ

出典:慶應義塾 過去問
この動画を見る 

関西大 漸化式 高校数学 Mathematics Japanese university entrance exam

アイキャッチ画像
単元: #数A#数Ⅱ#大学入試過去問(数学)#式と証明#整数の性質#約数・倍数・整数の割り算と余り・合同式#整式の除法・分数式・二項定理#数列#漸化式#学校別大学入試過去問解説(数学)#立教大学#数学(高校生)#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
関西大学過去問題
n自然数
$a_1=3 \quad\quad a_{n+1}=2a_n-n^2+n$
$a_n$をnで表せ

立教大学過去問題
$2^{18}-1$を素因数分解
この動画を見る 

大学入試問題#752「初見だと少し焦る」 電気通信大学後期(2023) #区分求積法

アイキャッチ画像
単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#数学(高校生)#電気通信大学
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \lim_{ n \to \infty } \displaystyle \frac{1}{n}\displaystyle \sum_{k=2n+1}^{3n} \displaystyle \frac{1}{\sin \displaystyle \frac{\pi\ k}{6n}}$

出典:2023年電子通信大学後期 入試問題
この動画を見る 

福田の数学〜明治大学2024理工学部第1問(3)〜x軸まわりとy軸まわりの回転体の体積

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#面積・体積・長さ・速度#学校別大学入試過去問解説(数学)#明治大学#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
座標平面上の曲線 $y=e^x$ を $C$ とする。
(a) 曲線 $C$ と $x$ 軸および $2$ 直線 $x=0,x=\log 2$ で囲まれた部分を、 $x$ 軸のまわりに $1$ 回転してできる立体の体積は $\displaystyle \frac{\fbox{タ}}{\fbox{チ}}\pi$ である。
(b) 曲線 $C$ と $y$ 軸および直線 $y=e^3$ で囲まれた部分を、 $y$ 軸のまわりに $1$ 回転してできる立体の体積は $(\fbox{ツ}e^3-\fbox{テ})\pi$ である。

ただし、 $\log x$ は $x$ の自然対数を表し、 $e$ は自然対数の底である。
この動画を見る 

これは超良問の整数問題! #尾道市立大学2023 #整数問題

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#数学(高校生)
指導講師: ますただ
問題文全文(内容文):
$x,y$を整数とする
$p=x^3+y^3$と表せる素数$p$を
小さいものから順に4つ求めよ.

2023尾道市立大学後期過去問題
この動画を見る 
PAGE TOP