【理数個別の過去問解説】2021年度 神奈川大学給費生入試 文系数学 第1問解説 - 質問解決D.B.(データベース)

【理数個別の過去問解説】2021年度 神奈川大学給費生入試 文系数学 第1問解説

問題文全文(内容文):
次の空欄(a)~(d)を適当に補え。
(1) iを虚数単位とする。複素数$(2-i)^2$の実部は$(a)$である。
(2) $\theta$がすべての実数を動くとき、$\cos\theta+\cos2\theta$の最小値は$(b)$である。
(3) コインを5回投げて、すべて同じ面がでる確率をpとする。このとき$\log_2 p$は$(c)$である。
(4) xの関数 f(x)は$\displaystyle \int_{0}^{2}(f(t)+2t)dt=x^3+x^2+x$を満たす。このとき、$f(x)=(d)$である。

チャプター:

0:00 オープニング
0:15 (1)の解き方
1:39 (2)の解き方
3:34 (3)の解き方
4:57 (4)の解き方
6:29 まとめ

単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#神奈川大学#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
次の空欄(a)~(d)を適当に補え。
(1) iを虚数単位とする。複素数$(2-i)^2$の実部は$(a)$である。
(2) $\theta$がすべての実数を動くとき、$\cos\theta+\cos2\theta$の最小値は$(b)$である。
(3) コインを5回投げて、すべて同じ面がでる確率をpとする。このとき$\log_2 p$は$(c)$である。
(4) xの関数 f(x)は$\displaystyle \int_{0}^{2}(f(t)+2t)dt=x^3+x^2+x$を満たす。このとき、$f(x)=(d)$である。

投稿日:2022.01.01

<関連動画>

福田の数学〜東京慈恵会医科大学2022年医学部第1問〜確率の基本性質

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#確率#学校別大学入試過去問解説(数学)#数学(高校生)#東京慈恵会医科大学
指導講師: 福田次郎
問題文全文(内容文):
袋Aには白玉2個、赤玉1個、袋Bには白玉1個、赤玉2個が入っている。
この状態から始めて、次の操作を繰り返し行う。
操作
① 袋A、袋Bから玉を1個ずつ取り出す。
② $(\textrm{i})$取り出した2個の玉の色が同じである場合は、取り出した玉を2個とも
袋Aに入れる。
$(\textrm{ii})$取り出した2個の玉の色が異なる場合は、袋Aから取り出した玉は袋B
に入れ、袋Bから取り出した玉は袋Aに入れる。
このとき、
・操作を2回繰り返した後に袋Aに入っている赤玉の個数が1個である確率は$\boxed{\ \ (ア)\ \ }$
・操作を3回繰り返した後に袋Aに入っている赤玉の個数が0個である確率は$\boxed{\ \ (イ)\ \ }$
である。

2022東京慈恵会医科大学医学部過去問
この動画を見る 

富山大 積分 6分の1公式 高校数学 Mathematics Japanese university entrance exam

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#学校別大学入試過去問解説(数学)#不定積分・定積分#数学(高校生)#富山大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
富山大学過去問題
$y=x^2-2x+1$と$y=mx+2$とで囲まれる面積の最小値
この動画を見る 

福田の数学〜東京科学大学(旧・東京工業大学)2025理系第4問〜フィボナッチ数列と無限級数の和

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#数列とその和(等差・等比・階差・Σ)#学校別大学入試過去問解説(数学)#東京工業大学#数学(高校生)#数B
指導講師: 福田次郎
問題文全文(内容文):
$\boxed{4}$

数列$\{a_n\}$を

$a_1=a_2=1,a_{n+2}=a_{n+1}+a_n (n=1,2,3,\cdots)$

により定め、数列$\{b_n\}$を

$\tan b_n=\dfrac{1}{a_n}$

により定める。

ただし、$0\lt b_n \lt \dfrac{\pi}{2}$であるものとする。

(1)$n\geqq 2$に対して、$a_{n+1}a_{n-1}-{a_n}^2$を求めよ。

(2)$m\geqq 1$($m$は整数)に対して、

$a_{2m}・\tan(b_{2m+1}+b_{2m+2})$を求めよ。

(3)無限級数$\displaystyle \sum_{m=0}^{\infty} b_{2m+1}$を求めよ。

$2025$年東京科学大学(旧・東京工業大学)
理系過去問題
この動画を見る 

大学入試問題#299 信州大学(2001 類題②) #定積分

アイキャッチ画像
単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#数学(高校生)#信州大学
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{1}^{3}\displaystyle \frac{\sqrt{ x }}{\sqrt{ x+1 }-1}dx$

出典:2001年信州大学 入試問題
この動画を見る 

福田の数学〜過去の入試問題(期間限定)〜東京慈恵会医科大学医学部2020第1問〜確率の基本性質

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#確率#学校別大学入試過去問解説(数学)#数学(高校生)#東京慈恵会医科大学#東京慈恵会医科大学
指導講師: 福田次郎
問題文全文(内容文):
$\fbox{1}$ 次の$\square$にあてはまる適切な数値を解答欄に記入せよ。
袋$A$には赤玉$3$個、白玉$1$個、袋$B$には赤玉$1$個、白玉$3$個が入っている。
「袋$A$から$2$個の玉を取り出して袋$B$に入れ、次に袋$B$から$2$個の玉を取り出して袋$A$に入れる」という操作を繰り返す。$1$回の操作の後、袋$A$に白玉が$2$個以上ある確率は$\fbox{(ア)}$、$2$回の操作の後、袋$A$の中が白玉だけになる確率は$\fbox{(イ)}$である。
この動画を見る 
PAGE TOP