大学入試問題#139 佐賀大学(2014) 定積分 - 質問解決D.B.(データベース)

大学入試問題#139 佐賀大学(2014) 定積分

問題文全文(内容文):
$\displaystyle \int_{0}^{\frac{\pi}{4}}x\ \tan^2x\ dx$を計算せよ。

出典:2014年佐賀大学 入試問題
単元: #大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#数学(高校生)#佐賀大学#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{0}^{\frac{\pi}{4}}x\ \tan^2x\ dx$を計算せよ。

出典:2014年佐賀大学 入試問題
投稿日:2022.03.13

<関連動画>

大学入試問題#354「思った以上に大変でした・・・」 弘前大学 改  #定積分

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#数学(高校生)#弘前大学#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{0}^{log\ x} \displaystyle \frac{(e^x-1)(e^x-2)}{e^x+1} dx$

出典:広前大学 入試問題
この動画を見る 

大学入試問題#185 大阪府立大学(2010) 定積分

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#大阪府立大学#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{0}^{1}\displaystyle \frac{1}{\sqrt{ (3+x^2)^3 }}dx$を計算せよ。

出典:2010年大阪府立大学 入試問題
この動画を見る 

【数Ⅲ-154】定積分の置換積分法③

アイキャッチ画像
単元: #積分とその応用#定積分#数学(高校生)#数Ⅲ
指導講師: とある男が授業をしてみた
問題文全文(内容文):
数Ⅲ(定積分の置換積分法③)
Q次の定積分を求めよ。

①$\int_{-\frac{\pi}{3}}^\frac{\pi}{3}x^2\sin x \ dx$

➁$\int_{-1}^1\frac{1-x}{1+x^2} \ dx$

③$\int_{-\frac{\pi}{2}}^\frac{\pi}{2}\cos^3 x \ dx$
この動画を見る 

大学入試問題#211 宮崎大学(2018) 定積分

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#宮崎大学#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{0}^{\frac{\pi}{2}}\sqrt{ 1+\sin\ x }\ dx$を計算せよ

出典:2018年宮崎大学 入試問題
この動画を見る 

AkiyaMathさんと学ぶ積分計算 Level 1 #定積分

アイキャッチ画像
単元: #積分とその応用#定積分#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{-\frac{1}{2}}^{\frac{3}{2}}\displaystyle \frac{dx}{x^3-3x+2}$を計算せよ
この動画を見る 
PAGE TOP