大学入試問題#139 佐賀大学(2014) 定積分 - 質問解決D.B.(データベース)

大学入試問題#139 佐賀大学(2014) 定積分

問題文全文(内容文):
$\displaystyle \int_{0}^{\frac{\pi}{4}}x\ \tan^2x\ dx$を計算せよ。

出典:2014年佐賀大学 入試問題
単元: #大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#数学(高校生)#佐賀大学#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{0}^{\frac{\pi}{4}}x\ \tan^2x\ dx$を計算せよ。

出典:2014年佐賀大学 入試問題
投稿日:2022.03.13

<関連動画>

#40 数検1級1次 過去問 微分方程式

アイキャッチ画像
単元: #積分とその応用#定積分#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$3y\displaystyle \frac{d^2y}{dx^2}+(\displaystyle \frac{dy}{dx})^2=0$において
$x=0$のとき$y=0$
$X=1$のとき$y=1$
を満たす特殊解を求めよ。
この動画を見る 

大学入試問題#328 金沢大学(2013) #定積分

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#数学(高校生)#金沢大学#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$a \gt 0$
$\displaystyle \int_{0}^{\frac{1}{a}}e^{\sqrt{ ax }}dx$

出典:2013年金沢大学 入試問題
この動画を見る 

大学入試問題#161 大阪市立大学(1999) 定積分

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#数学(高校生)#数Ⅲ#大阪市立大学
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{0}^{\frac{\pi}{2}}(\displaystyle \frac{x\ \sin\ x}{1+\cos\ x}+\displaystyle \frac{x\ \cos\ x}{1+\sin\ x})dx$を計算せよ。

出典:1999年大阪市立大学 入試問題
この動画を見る 

#会津大学2023#定積分_9#元高校教員

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#積分とその応用#定積分#学校別大学入試過去問解説(数学)#不定積分・定積分#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{0}^{\pi} \sin3x\cos2x$ $dx$

出典:2023年会津大学
この動画を見る 

#千葉大学2023#定積分#ますただ

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#積分とその応用#定積分#学校別大学入試過去問解説(数学)#不定積分・定積分#千葉大学#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
以下の定積分を解け。
$\displaystyle \int_{0}^{\frac{\pi}{6}} \displaystyle \frac{1}{\cos x} dx$

出典:2023年千葉大学
この動画を見る 
PAGE TOP