変な指数方程式 - 質問解決D.B.(データベース)

変な指数方程式

問題文全文(内容文):
これを解け.$(x\gt 0)$
$x^x=\left(\dfrac{256}{625}\right)^{\frac{256}{625}}$
単元: #数A#整数の性質#ユークリッド互除法と不定方程式・N進法#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
これを解け.$(x\gt 0)$
$x^x=\left(\dfrac{256}{625}\right)^{\frac{256}{625}}$
投稿日:2021.10.29

<関連動画>

数学「大学入試良問集」【4−5 整数の個数】を宇宙一わかりやすく

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#場合の数#学校別大学入試過去問解説(数学)#数学(高校生)#姫路工業大学
指導講師: ハクシ高校【数学科】良問演習チャンネル
問題文全文(内容文):
5桁の自然数$n$の万の位、千の位、百の位、十の位、一の位の数字をそれぞれ$a,b,c,d,e$とする。
次の各条件について、それを満たす$n$は、何個あるか。
(1)$a,b,c,d,e$が互いに異なる。
(2)$a \gt b$
(3)$a \lt b \lt c \lt d \lt e$
この動画を見る 

【共通テスト】数学IA 第5問図形の性質を解説してみました(2023年本試)【この動画だけ絶望的にわかりにくい】

アイキャッチ画像
単元: #数A#図形の性質#数学(高校生)
指導講師: カサニマロ【べんとう・ふきのとうの授業動画】
問題文全文(内容文):
動画内手順1の(Step 1)と(Step 4)により、4点C,G,H,[ウ]は同一円周上にあることが分かる。
よって、$\angle CHG =$[エ]である。
一方、点Eは円Oの周上にあることから、[エ]=[オ]がわかる。
よって、$\angle CHG =$[オ]であるので、4点C,G,H,[カ]は同一円周上にある。
この円が点[ウ]を通ることにより、$\angle OEH =$[アイ]$^{ \circ }$を示すことができる。


[ウ]の解答群
⓪B
①D
②F
③O


[エ]の解答群
⓪$\angle AEC$
①$\angle CDF$
②$\angle CGH$
③$\angle CBO$
④$\angle FOG$


[オ]の解答群
⓪$\angle AED$
①$\angle ADE$
②$\angle BOE$
③$\angle DEG$
④$\angle EOH$


[カ]の解答群
⓪A
①D
②E
③F

-----------------
動画内手順2のとき、$\angle PTS =$[キ]である。
円Oの半径が$\sqrt{ 5 }$で、$OT=3 \sqrt{ 6 }$であったとすると、3点O,P,Rを通る円の半径は$\displaystyle \frac{[ク]\sqrt{ [ケ] }}{[コ]}$であり、RT=[サ]である。


[キ]の解答群
⓪$\angle PQS$
①$\angle PST$
②$\angle QPS$
③$\angle QRS$
④$\angle SRT$
この動画を見る 

【高校数学】 数A-39 傍心と傍接円

アイキャッチ画像
単元: #数A#図形の性質#周角と円に内接する四角形・円と接線・接弦定理#方べきの定理と2つの円の関係#数学(高校生)
指導講師: とある男が授業をしてみた
問題文全文(内容文):
三角形の1つの①の①と,他の2つの頂点における
②の②は1点で交わる.この点を傍心という.

③$\triangle ABC$の頂点$A$における内角の二等分線と直線$B,C$
それぞれにおける外角の二等分線は1点で交わることを証明しよう.

図は動画内参照
この動画を見る 

面積

アイキャッチ画像
単元: #数A#図形の性質#周角と円に内接する四角形・円と接線・接弦定理#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
正方形
円の半径=5
赤線部の面積=?
*図は動画内参照
この動画を見る 

2つの自然数が互いに素である確率 なぜかアレが出てきます

アイキャッチ画像
単元: #数A#場合の数と確率#確率#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
任意の2つの自然数が互いに素である確率を求めよ.
この動画を見る 
PAGE TOP