【高校受験対策】数学-規則性8 - 質問解決D.B.(データベース)

【高校受験対策】数学-規則性8

問題文全文(内容文):
高校受験対策・規則性8

Q.
形も大きさも同じ半径1cmの円盤がたくさんある。
これらを図1のように、縦m枚、横n枚(m,nは3以上の整数)の長形状に並べる。
このとき4つの角にある円盤の中心を結んでできる図形は長方形である。
さらに図2のように、それぞれの円盤は$x$で示した、点で他の円盤と接しており、ある円盤が接している円盤の枚数をその円盤に書く。
例えば、図2はm=3、n=4の長方形状に円盤を並べたものであり、
円盤Aは2枚の円盤と接しているので、円盤Aに書かれる数は2となる。
同様に円盤Bに 書かれる数は3、円盤Cに書かれる数は4となる。
また、m=3、n=4の長方形状に円盤を並べた とき、すべての円盤に他の円盤と押している枚数をそれぞれ書くと、図3のようになる。

①m=4、n=5のとき、3が書かれた円盤の枚数を求めなさい。

②m=5、n=6のとき、円盤に書かれた数の合計を求めなさい。

③m=$x$、n=$x$のとき、円盤に書かれた数の合計は440であった。
このとき$x$の値を求めなさい。

④の文のⅠ、Ⅱ、Ⅲに当てはまる数を求めなさい。ただしa,bは20以上の整数で、a \lt bとする。
m=a+1、n=b+1として、円盤を図1のように並べる。
4つの角にある円盤の中心を結んでできる長方形の面積が780$cm^2$となるとき、
4が書かれた円盤の枚数はa=(Ⅰ)、b=(Ⅱ)のとき最も多くなり、その枚数は(Ⅲ)枚である。
単元: #数学(中学生)#高校入試過去問(数学)
指導講師: とある男が授業をしてみた
問題文全文(内容文):
高校受験対策・規則性8

Q.
形も大きさも同じ半径1cmの円盤がたくさんある。
これらを図1のように、縦m枚、横n枚(m,nは3以上の整数)の長形状に並べる。
このとき4つの角にある円盤の中心を結んでできる図形は長方形である。
さらに図2のように、それぞれの円盤は$x$で示した、点で他の円盤と接しており、ある円盤が接している円盤の枚数をその円盤に書く。
例えば、図2はm=3、n=4の長方形状に円盤を並べたものであり、
円盤Aは2枚の円盤と接しているので、円盤Aに書かれる数は2となる。
同様に円盤Bに 書かれる数は3、円盤Cに書かれる数は4となる。
また、m=3、n=4の長方形状に円盤を並べた とき、すべての円盤に他の円盤と押している枚数をそれぞれ書くと、図3のようになる。

①m=4、n=5のとき、3が書かれた円盤の枚数を求めなさい。

②m=5、n=6のとき、円盤に書かれた数の合計を求めなさい。

③m=$x$、n=$x$のとき、円盤に書かれた数の合計は440であった。
このとき$x$の値を求めなさい。

④の文のⅠ、Ⅱ、Ⅲに当てはまる数を求めなさい。ただしa,bは20以上の整数で、a \lt bとする。
m=a+1、n=b+1として、円盤を図1のように並べる。
4つの角にある円盤の中心を結んでできる長方形の面積が780$cm^2$となるとき、
4が書かれた円盤の枚数はa=(Ⅰ)、b=(Ⅱ)のとき最も多くなり、その枚数は(Ⅲ)枚である。
投稿日:2019.11.04

<関連動画>

【よく出る…!】図形:和洋国府台女子高等学校~全国入試問題解法

アイキャッチ画像
単元: #数学(中学生)#中3数学#高校入試過去問(数学)
指導講師: 高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
$頂点Aから\triangle{BDE}に垂線をおろし、その交点をIとする。$$このとき、AIの長さを求めよ。$
この動画を見る 

2023高校入試数学解説69問目 座標平面上の正方形2 千葉県

アイキャッチ画像
単元: #数学(中学生)#平面図形#図形の移動#平面図形その他#高校入試過去問(数学)
指導講師: 数学を数楽に
問題文全文(内容文):
Dの座標は?
*図は動画内参照

2023千葉県
この動画を見る 

入試予想問題:法政大学国際高等学校~全国入試問題解法

アイキャッチ画像
単元: #数学(中学生)#中3数学#三平方の定理#高校入試過去問(数学)#法政大学国際高等学校
指導講師: 高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
入試予想問題 法政大学国際高等学校

図形と関数の組み合わせの問題や
空間図形の問題が出やすい!

(1)$(-\displaystyle \frac{4}{3}x^2y)^3 \div (\displaystyle \frac{-y}{6x})^2 \times (\displaystyle \frac{4y^2}{2x})^3$
計算をせよ。
(2)$a^2-2ℓ^2-aℓ+ℓc+ca$
を因数分解せよ。
(3)$\sqrt{ 11 }$ の小数部分を$a$とするとき、 $a ^ 2 + 6a + 5$
の値?
(4)$\sqrt{ 3x } + \sqrt{ 2y } = 1 , \sqrt{ 2x } + \sqrt{ 3y } = \sqrt{ 6 }$ のとき、
$x ^ 2 - y ^ 2 =?$
簡単な確率も。
(5)$AB=AD=2cm$
$DH=4cm$の直方体
この直方体を点$J$、$K$、$F$を通る平面で切ったとき。
$(JD=KD = 1cm)$
(1)切り口はどんな図形か。
(2)切り口の図形の周の長さを求めよ。
(3)切り口の図形の面積を求めよ。
※図は動画内参照
この動画を見る 

2023高校入試解説37問目 早稲田実業最初の一問 因数分解

アイキャッチ画像
単元: #数学(中学生)#中3数学#式の計算(展開、因数分解)#高校入試過去問(数学)
指導講師: 数学を数楽に
問題文全文(内容文):
因数分解せよ
$(x+1)a^2 -2xa +x -1$

2023早稲田実業学校
この動画を見る 

食塩水2回くみ出し

アイキャッチ画像
単元: #数学(中学生)#文章題#売買損益と食塩水#高校入試過去問(数学)
指導講師: 数学を数楽に
問題文全文(内容文):
濃度10%の食塩水10kg入れた容器に次のA,Bの操作をする。
A:x kgをくんで同量の水を戻す。
B:2x kgをくんで同量の水を戻す。
操作Aののち、操作Bを行ったら食塩水の濃度は2.8%。
x=?

2021中央大学杉並高等学校
この動画を見る 
PAGE TOP