問題文全文(内容文):
熊本大学過去問題
$a_1=b_1=1,b_{n+1}=3b_n+a_n$
$c_n=a_n+b_n+1$
数列{$c_n$}は公比3の等比数列である。
(1)$a_n$をnで表せ。
(2)$b_n$をnで表せ。
熊本大学過去問題
$a_1=b_1=1,b_{n+1}=3b_n+a_n$
$c_n=a_n+b_n+1$
数列{$c_n$}は公比3の等比数列である。
(1)$a_n$をnで表せ。
(2)$b_n$をnで表せ。
単元:
#大学入試過去問(数学)#数列#漸化式#学校別大学入試過去問解説(数学)#熊本大学#数学(高校生)#数B
指導講師:
鈴木貫太郎
問題文全文(内容文):
熊本大学過去問題
$a_1=b_1=1,b_{n+1}=3b_n+a_n$
$c_n=a_n+b_n+1$
数列{$c_n$}は公比3の等比数列である。
(1)$a_n$をnで表せ。
(2)$b_n$をnで表せ。
熊本大学過去問題
$a_1=b_1=1,b_{n+1}=3b_n+a_n$
$c_n=a_n+b_n+1$
数列{$c_n$}は公比3の等比数列である。
(1)$a_n$をnで表せ。
(2)$b_n$をnで表せ。
投稿日:2018.07.30