福島大 3次関数の接線 微分 - 質問解決D.B.(データベース)

福島大 3次関数の接線 微分

問題文全文(内容文):
$(-1,1)$から$y=x^3-2px+3$に接線が2本引けるとき$p$の値を求めよ

出典:1991年福島大学 過去問
単元: #大学入試過去問(数学)#微分とその応用#接線と法線・平均値の定理#学校別大学入試過去問解説(数学)#数学(高校生)#福島大学#数Ⅲ
指導講師: 鈴木貫太郎
問題文全文(内容文):
$(-1,1)$から$y=x^3-2px+3$に接線が2本引けるとき$p$の値を求めよ

出典:1991年福島大学 過去問
投稿日:2019.07.18

<関連動画>

大学入試問題#436「2次試験までに一度は解くべき問題!!」 東京大学(1995) #不等式

アイキャッチ画像
単元: #大学入試過去問(数学)#微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#学校別大学入試過去問解説(数学)#東京大学#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
すべての正の実数$x,y$に対し、
$\sqrt{ x }+\sqrt{ y } \leqq k\sqrt{ 2x+y }$ が成り立つような実数$k$の最小値を求めよ

出典:1995年東京大学 入試問題
この動画を見る 

【数Ⅲ】【微分とその応用】不等式の応用4 ※問題文は概要欄

アイキャッチ画像
単元: #微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#数学(高校生)#数Ⅲ
教材: #4S数学#4S数学ⅢのB問題解説#中高教材#微分法の応用
指導講師: 理数個別チャンネル
問題文全文(内容文):
$x→∞$のとき、$y=x$が$y=\log x$と比較して、
より急速に増大すること、すなわち

$\displaystyle \lim_{ x \to \infty } \displaystyle \frac{x}{\log x} =\infty$

が成り立つことを証明せよ。

ただし、まずは次の①~③のどれか1つを証明し、それを利用せよ。

①$x≧4$のとき、$x^2>\log x$が成り立つ
②$x≧4$のとき、$x>\log x$が成り立つ
③$x≧4$のとき、$\sqrt{x}>\log x$が成り立つ
この動画を見る 

04愛知県教員採用試験(数学:9番 微分方程式)

アイキャッチ画像
単元: #微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#その他#数学(高校生)#数Ⅲ#教員採用試験
指導講師: ますただ
問題文全文(内容文):
$\boxed{9}$
$\dfrac{dy}{dx}=\dfrac{-x+3}{y-4}$をみたす図形が
原点を通るとき,この図形で囲まれる面積を求めよ.
この動画を見る 

福田のわかった数学〜高校3年生理系090〜グラフを描こう(12)無理関数、凹凸、漸近線

アイキャッチ画像
単元: #関数と極限#微分とその応用#関数(分数関数・無理関数・逆関数と合成関数)#関数の変化(グラフ・最大最小・方程式・不等式)#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
数学$\textrm{III}$ グラフを描こう。(12)
$y=\sqrt[3]{x^3-x^2}$ のグラフを描け。ただし凹凸、漸近線も調べよ。
この動画を見る 

【数Ⅲ】【微分とその応用】平均値の定理の利用4 ※問題文は概要欄

アイキャッチ画像
単元: #微分とその応用#接線と法線・平均値の定理#数学(高校生)#数Ⅲ
教材: #4S数学#4S数学ⅢのB問題解説#中高教材#微分法の応用
指導講師: 理数個別チャンネル
問題文全文(内容文):
平均値の定理を用いて、次の極限を求めよ。
(1) lim[x→+0](e^x-e^(tanx))/(x-tanx)
(2) lim[x→ 0](e^x-e^(sinx))/(x-sinx)
(3) lim[x→∞]x{log(x+2)-logx}
この動画を見る 
PAGE TOP