平方根を含む計算は手際よくこなそう!~全国入試問題解法 #shorts, #高校入試, #頭の体操, #数学, - 質問解決D.B.(データベース)

平方根を含む計算は手際よくこなそう!~全国入試問題解法 #shorts, #高校入試, #頭の体操, #数学,

問題文全文(内容文):
$ \dfrac{(\sqrt{11}-\sqrt3)(\sqrt6+\sqrt{22})}{2\sqrt2}+\dfrac{(\sqrt6-3\sqrt2)^2}{3}$の値を求めよ.

都立立川高校過去問
単元: #数学(中学生)#中3数学#平方根
指導講師: 高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
$ \dfrac{(\sqrt{11}-\sqrt3)(\sqrt6+\sqrt{22})}{2\sqrt2}+\dfrac{(\sqrt6-3\sqrt2)^2}{3}$の値を求めよ.

都立立川高校過去問
投稿日:2024.03.24

<関連動画>

【高校受験対策/数学】死守-91

アイキャッチ画像
単元: #数学(中学生)#中1数学#正の数・負の数#平方根#比例・反比例#空間図形#2次関数#文字と式
指導講師: とある男が授業をしてみた
問題文全文(内容文):
高校受験対策・死守91

①$-7+9$を計算しなさい。

②$\frac{15}{2}×(-\frac{4}{5})$を計算しなさい。

③$3(2x-y)+4(x+3y)$を 計算しなさい。

④$y$は$x$に反比例し、$x=3$のとき$y=2$である。
$y$を$x$の式で表しなさい。

⑤14の平方根うち、正数の数であるものを答えなさい。

⑥底面が1辺$6cm$の正方形で、体積が$96cm^3$である四角すいの高さを求めなさい。

⑦2つの整数$m,n$について、計算の結果がいつも整数になるとは限らないものを、
次のア~エから1つ選び、記号で答えなさい。

ア $m+n$
イ $m-n$
ウ $m×n$
エ $m÷n$

⑧関数$y=-\frac{3}{4}x^2$について、
次のア~エのうち、正しいものを2つ選び記号で 答えなさい。

ア 変化の割合は一定ではない。
イ $x$の値がどのように変化しても、その値が増加することはない。
ウ $x$がどのような値でも、$y$の値は負の数である。
エ グラフの開き方は関数$y=x^2$のグラフより大きい。
この動画を見る 

【裏技】ルートの近似値出し方

アイキャッチ画像
単元: #数学(中学生)#中3数学#平方根#数Ⅰ#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#数学(高校生)
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
ルートの近似値出し方
この動画を見る 

【高校受験対策/数学】死守74

アイキャッチ画像
単元: #数学(中学生)#中1数学#中2数学#中3数学#正の数・負の数#式の計算(単項式・多項式・式の四則計算)#式の計算(展開、因数分解)#平方根#空間図形#文字と式#平面図形
指導講師: とある男が授業をしてみた
問題文全文(内容文):
高校受験対策・死守74

①$6-17$を計算しなさい。

②$6÷(-\frac{2}{3})$を計算しなさい。

③$2x+3y-(\frac{x+5y}{2})$を計算しなさい。

④$(\sqrt{3}+1)(\sqrt{3}-3)$を計算しなさい。

⑤ 下の図のような、平行四辺形$ABCD$がある。このとき$\angle x$の大きさを求めなさい。

⑥右の図のように、1辺の長さが$4cm$の立方体にちょうど入る大きさの球がある。
この球の体積を求めなさい。

⑦$am$のリボンから$bm$切り取ると、残りのリボンの長さは$2m$より短い。
この数量の関係を不等式で表しなさい。

⑧ある小学校で、工場の見学に行くために電車を利用することになった。
通常は児童15人と先生2人が支払う運賃の合計が9100円になる。
しかし、児童が10人以上いるとき児童の運賃のみが4割引きになる。
このため、児童15人と先生2人の運賃との合計は6100円になった。
このとき、割引きされた後の児童1人分の運賃を求めなさい。
この動画を見る 

『√』平方根ルートの記号を誰でも理解させます

アイキャッチ画像
単元: #数学(中学生)#中3数学#平方根
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
『$\sqrt{   }$』平方根ルートの記号を誰でも理解させます
この動画を見る 

【中学数学】数学検定3級2次:問題6

アイキャッチ画像
単元: #数学(中学生)#中3数学#平方根#数学検定・数学甲子園・数学オリンピック等#数学検定#数学検定3級
指導講師: 理数個別チャンネル
問題文全文(内容文):
問題6.次の問いに答えなさい。
(13) nを正の整数とします。$\sqrt{120n}$が正の整数となるようなnの最小値を求めなさい。
(14) $x=\sqrt6+\sqrt2,y=\sqrt6-\sqrt2$のとき、$x^2-y^2$の値を求めなさい。
この動画を見る 
PAGE TOP