平方根を含む計算は手際よくこなそう!~全国入試問題解法 #shorts, #高校入試, #頭の体操, #数学, - 質問解決D.B.(データベース)

平方根を含む計算は手際よくこなそう!~全国入試問題解法 #shorts, #高校入試, #頭の体操, #数学,

問題文全文(内容文):
$ \dfrac{(\sqrt{11}-\sqrt3)(\sqrt6+\sqrt{22})}{2\sqrt2}+\dfrac{(\sqrt6-3\sqrt2)^2}{3}$の値を求めよ.

都立立川高校過去問
単元: #数学(中学生)#中3数学#平方根
指導講師: 高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
$ \dfrac{(\sqrt{11}-\sqrt3)(\sqrt6+\sqrt{22})}{2\sqrt2}+\dfrac{(\sqrt6-3\sqrt2)^2}{3}$の値を求めよ.

都立立川高校過去問
投稿日:2024.03.24

<関連動画>

【高校受験対策/数学】死守-90

アイキャッチ画像
単元: #数学(中学生)#中1数学#正の数・負の数#方程式#平方根#2次方程式#確率#2次関数#文字と式#平面図形
指導講師: とある男が授業をしてみた
問題文全文(内容文):
高校受験対策・死守90

①$6-5-(-2)$を計算しなさい。

②$a=4$のとき、$6a^2÷3a$の値を求めなさい。

③$\sqrt{2}×\sqrt{6}×\frac{9}{\sqrt{3}}$を計算しなさい。

④方程式$x^2+5x-6=0$を解きなさい。

⑤2点$A(1,7)$、$B(3,2)$の間の距離を求めなさい。

⑥$4 \lt \sqrt{a}\lt \frac{13}{3}$に当てはまる整数$a$の値をすべて求めなさい。

⑦右の図の①~④の放物線は、下のア~エの関数のグラフです。
①と④はそれぞれどの関数のグラフですか。
ア~エの中から選びその記号をそれぞれ書きなさい。

ア $y=x^2$
イ $y=\frac{1}{3}x^2$
ウ $y=2x^2$
エ $y=-\frac{1}{2}x^2$

⑧数字を書いた4枚のカード①、②、③、④が袋Aの中に、
数字を書いた3枚のカード①、②、③が袋Bの中に入っています。
それぞれの袋からカードを1枚ずつ取り出すとき、
その2枚のカードに書いてある数の和が6以上になる確率を求めなさい。
この動画を見る 

【連立方程式最終問題⁈】連立方程式:慶応義塾高等学校(訂正版)~全国入試問題解法

アイキャッチ画像
単元: #数学(中学生)#中2数学#連立方程式#平方根#高校入試過去問(数学)#慶應義塾高等学校
指導講師: 高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
入試問題 慶応義塾高等学校
【連立方程式】

$\begin{eqnarray}
\left\{
\begin{array}{l}
\displaystyle \frac{5}{x-\sqrt{ 2 }} + \displaystyle \frac{2}{x+\sqrt{ 2 y}}= 1 \\
\displaystyle \frac{1}{x-\sqrt{ 2 }} - \displaystyle \frac{5}{x+\sqrt{ 2y }} = 2
\end{array}
\right.
\end{eqnarray}$
の解は、$x=$▭、$y=$▭である。
四角部分を求めよ。
この動画を見る 

【中学数学あるある】式変形で気持ち良く解ける計算問題 #Shorts

アイキャッチ画像
単元: #数学(中学生)#中3数学#平方根
指導講師: 数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
$\sqrt{85^2-84^2+61^2-60^2-26×11}$

これを解け。
この動画を見る 

平方根と整数の典型問題は大切!~全国入試問題解法 #shorts, #数学, #高校入試, #サウンド, #不等式,

アイキャッチ画像
単元: #数学(中学生)#中3数学#平方根
指導講師: 高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
$ \sqrt5 \leqq n \leqq \sqrt{11}$となるような自然数$ n $の値は$ n=\Box $である.

沖縄県入試問題過去問
この動画を見る 

ルートが入っている等式の変形  2025早稲田本庄

アイキャッチ画像
単元: #数学(中学生)#中3数学#平方根
指導講師: 数学を数楽に
問題文全文(内容文):
(早稲田本庄2025)
$\sqrt{a+b}+\sqrt{a-b}=2$
のとき,$a$を$b$の式で表せ.
ただし,$0<b<a<2$とする.
この動画を見る 
PAGE TOP