福田の数学〜ChatGPTに東工大第1問を解かせてみたら大変なことに〜 - 質問解決D.B.(データベース)

福田の数学〜ChatGPTに東工大第1問を解かせてみたら大変なことに〜

問題文全文(内容文):
$\displaystyle\int_0^{2023}\frac{2}{x+e^x}dx$ の整数部分を求めよ。

東工大過去問
単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#その他#東京工業大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$\displaystyle\int_0^{2023}\frac{2}{x+e^x}dx$ の整数部分を求めよ。

東工大過去問
投稿日:2023.03.23

<関連動画>

福田の1.5倍速演習〜合格する重要問題078〜京都大学2018年度文理共通問題〜素数の性質

アイキャッチ画像
単元: #数A#数Ⅱ#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#微分法と積分法#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{2}$ $n^3$-7$n$+9 が素数となるような整数$n$を全て求めよ。

2018京都大学文理過去問
この動画を見る 

福田の数学〜東京慈恵会医科大学2023年医学部第1問〜整数解と確率

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#整数の性質#確率#ユークリッド互除法と不定方程式・N進法#学校別大学入試過去問解説(数学)#数学(高校生)#東京慈恵会医科大学
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{1}$ 袋の中に1から5までの番号をつけた5個の玉が入っている。この袋から玉を1個取り出し、番号を調べてから元に戻す試行を、4回続けて行う。n回目(1≦n≦4)に取り出された玉の番号を$r_n$とするとき、
・$r_1$+$r_2$+$r_3$+$r_4$≦8 となる確率は$\boxed{\ \ (ア)\ \ }$
・$\displaystyle\frac{4}{r_1r_2}$+$\displaystyle\frac{2}{r_3r_4}$=1となる確率は$\boxed{\ \ (イ)\ \ }$
である。

2023東京慈恵会医科大学医学部過去問
この動画を見る 

福田のおもしろ数学143〜斜面の勾配

アイキャッチ画像
単元: #数学(中学生)#中3数学#大学入試過去問(数学)#三平方の定理#学校別大学入試過去問解説(数学)#東京大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
傾いた平面上で、もっとも急な方向の勾配(傾き)が$\frac{1}{3}$であるという。いま南北方向の勾配を測ったところ$\frac{1}{5}$であった。
東西方向の勾配はどれだけか。
この動画を見る 

福田の数学〜早稲田大学2023年人間科学部第2問〜対数不等式

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#指数関数と対数関数#対数関数#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{2}$ 不等式
$\log_4(16-x^2-y^2)$≧$\displaystyle\frac{3}{2}$+2$\log_{16}(2-x)$
を満たす点P($x$,$y$)の中で、$x$座標と$y$座標がともに整数であるものは$\boxed{\ \ オ\ \ }$個ある。このうち、$x$座標が最小となる点は($\boxed{\ \ カ\ \ }$, $\boxed{\ \ キ\ \ }$)である。
この動画を見る 

藤田医科大学 普通にやれば出るけどね

アイキャッチ画像
単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#数学(高校生)#藤田医科大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
$\left(-\frac{\sqrt3-1-(\sqrt{3}+1)i}{1+\sqrt{3}i}\right)^5$
これを求めよ.

藤田医科大過去問
この動画を見る 
PAGE TOP