福田の数学〜上智大学2024TEAP利用型文系第1問〜正四面体に関する図形問題 - 質問解決D.B.(データベース)

福田の数学〜上智大学2024TEAP利用型文系第1問〜正四面体に関する図形問題

問題文全文(内容文):
$1$ 辺の長さが $2$ の正四面体 $\mathrm{ABCD}$ において、辺 $\mathrm{AD}$ 上の点 $\mathrm{E}$、辺 $\mathrm{DC}$ 上の点 $\mathrm{F}$、辺 $\mathrm{CA}$ 上の点 $\mathrm{G}$、辺 $\mathrm{BC}$ 上の点 $\mathrm{H}$ を$\mathrm{AE}$$=\mathrm{DF}$$=\mathrm{CG}$$=2t,$ $\mathrm{BH}=t$ となるようにとる。ただし、 $0 \leqq t \leqq 1$ とする。
$(1)$ $\triangle \mathrm{EFG}$ の面積は $\sqrt{\fbox{ア}}(\fbox{イ}t^2$$+\fbox{ウ}t$$+\fbox{エ})$ である。
$(2)$ $\mathrm{B}$ から平面 $\mathrm{ACD}$ に垂線を下ろし、平面 $\mathrm{ACD}$ との交点を $\mathrm{P}$ とするとき、 $\mathrm{BP} = \frac{\fbox{オ}}{\fbox{カ}}\sqrt{\fbox{キ}}$ である。
$(3)$ $\mathrm{H}$ から平面 $\mathrm{EFG}$ に垂線を下ろし、平面 $\mathrm{EFG}$ との交点を $\mathrm{Q}$ とするとき、 $\mathrm{HQ} = \frac{\fbox{ク}}{\fbox{ケ}}\sqrt{\fbox{コ}}(t+\fbox{サ})$ である。
$(4)$ 四面体 $\mathrm{HEFG}$ の体積が最小になるのは
$t=\fbox{シ} + \frac{\fbox{ス}}{\fbox{セ}}\sqrt{\fbox{ソ}}$
単元: #大学入試過去問(数学)#空間ベクトル#空間ベクトル#学校別大学入試過去問解説(数学)#上智大学#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
$1$ 辺の長さが $2$ の正四面体 $\mathrm{ABCD}$ において、辺 $\mathrm{AD}$ 上の点 $\mathrm{E}$、辺 $\mathrm{DC}$ 上の点 $\mathrm{F}$、辺 $\mathrm{CA}$ 上の点 $\mathrm{G}$、辺 $\mathrm{BC}$ 上の点 $\mathrm{H}$ を$\mathrm{AE}$$=\mathrm{DF}$$=\mathrm{CG}$$=2t,$ $\mathrm{BH}=t$ となるようにとる。ただし、 $0 \leqq t \leqq 1$ とする。
$(1)$ $\triangle \mathrm{EFG}$ の面積は $\sqrt{\fbox{ア}}(\fbox{イ}t^2$$+\fbox{ウ}t$$+\fbox{エ})$ である。
$(2)$ $\mathrm{B}$ から平面 $\mathrm{ACD}$ に垂線を下ろし、平面 $\mathrm{ACD}$ との交点を $\mathrm{P}$ とするとき、 $\mathrm{BP} = \frac{\fbox{オ}}{\fbox{カ}}\sqrt{\fbox{キ}}$ である。
$(3)$ $\mathrm{H}$ から平面 $\mathrm{EFG}$ に垂線を下ろし、平面 $\mathrm{EFG}$ との交点を $\mathrm{Q}$ とするとき、 $\mathrm{HQ} = \frac{\fbox{ク}}{\fbox{ケ}}\sqrt{\fbox{コ}}(t+\fbox{サ})$ である。
$(4)$ 四面体 $\mathrm{HEFG}$ の体積が最小になるのは
$t=\fbox{シ} + \frac{\fbox{ス}}{\fbox{セ}}\sqrt{\fbox{ソ}}$
投稿日:2024.09.17

<関連動画>

福田の数学〜立教大学2023年経済学部第1問(5)〜共面条件

アイキャッチ画像
単元: #大学入試過去問(数学)#空間ベクトル#空間ベクトル#学校別大学入試過去問解説(数学)#立教大学#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{1}$ (5)$t$を実数とする。座標空間において、3点O(0,0,0), A(1,0,2), B(2,-1,0)の定める平面OAB上に点C($t$+1,$t$,1-$t$)があるとき、$t$=$\boxed{\ \ オ\ \ }$である。
この動画を見る 

福田の1.5倍速演習〜合格する重要問題062〜早稲田大学2019年度人間科学部第1問〜球面と平面の交わりの円周上の点

アイキャッチ画像
単元: #大学入試過去問(数学)#空間ベクトル#空間ベクトル#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
$\boxed{5}$ 3点A(2,1,7), B(2,5,5), C(5,3,5)を含む平面α上を動く点Pがある。
この点Pは、原点O(0,0,0)との距離OP≦7√2 を満たすように動く。このとき、平面α上
でPが動きうる領域の面積は$\boxed{\ \ ツ\ \ }\pi$ である。また、点Q(16, 10, 6)と
点Pの距離PQの最小値は$\boxed{\ \ テ\ \ }\sqrt{\boxed{\ \ ト\ \ }}$である。

2019早稲田大学人間科学部過去問
この動画を見る 

福田の数学〜慶應義塾大学2023年理工学部第2問〜空間ベクトルと2直線から等距離にある点の軌跡

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#平面上のベクトル#空間ベクトル#図形と方程式#軌跡と領域#ベクトルと平面図形、ベクトル方程式#空間ベクトル#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{2}$ $k$を正の実数とし、空間内に点O(0,0,0), A(4$k$, $-4k$, $-4\sqrt 2k$), B(7, 5, $-\sqrt 2$)をとる。点CはO, A, Bを含む平面上の点であり、OA=4BCで、四角形OACBはOAを底辺とする台形であるとする。
(1)$\cos\angle$AOB=$\boxed{\ \ ア\ \ }$である。台形OACBの面積を$k$を用いて表すと$\boxed{\ \ イ\ \ }$となる。
また、線分ACの長さを$k$を用いて表すと$\boxed{\ \ ウ\ \ }$となる。
(2)台形OACBが円に内接するとき、$k$=$\boxed{\ \ エ\ \ }$である。
(3)$k$=$\boxed{\ \ エ\ \ }$であるとし、直線OBと直線ACの交点をDとする。△OBPと△ACPの面積が等しい、という条件を満たす空間内の点P全体は、点Dを通る2つの平面上の点全体から点Dを除いたものとなる。これら2つの平面のうち、線分OAと交わらないものを$\alpha$とする。点Oから平面$\alpha$に下ろした垂線の長さは$\boxed{\ \ オ\ \ }$である。
この動画を見る 

【数C】空間ベクトル:4点(1,1,1) (-1,1,-1) (-1,-1,0) (2,1,0)を通る球面の方程式を求めよう。また、中心座標と半径も求めよう。

アイキャッチ画像
単元: #空間ベクトル#空間ベクトル#数学(高校生)#数C
指導講師: 理数個別チャンネル
問題文全文(内容文):
4点(1,1,1) (-1,1,-1) (-1,-1,0) (2,1,0)を通る球面の方程式を求めよう。また、中心座標と半径も求めよう。
この動画を見る 

【数B】ベクトル:ベクトルの基本⑱空間ベクトルの基本計算

アイキャッチ画像
単元: #空間ベクトル#空間ベクトル#数学(高校生)#数C
指導講師: 理数個別チャンネル
問題文全文(内容文):
空間ベクトルの基本
$a=(2,2,4),b=(4,4,2)$のなす角を求めよ
この動画を見る 
PAGE TOP