高校数学:数Ⅰ:図形と計量:三角比への応用:「三角形の形状」の考え方! - 質問解決D.B.(データベース)

高校数学:数Ⅰ:図形と計量:三角比への応用:「三角形の形状」の考え方!

問題文全文(内容文):
△ABCにおいて,sinA=cosBsinCが成り立つとき,この三角形はどのような形をしているか。
△ABCにおいて,次の等式が成り立つとき,この三角形はどのような形をしているか。
(1) asinA=bsinB
(2) sinA=2cosBsinC
(3) acosA=bcosB
チャプター:

0:00 オープニング
0:01 解法の確認
8:33 sinA=cosBsinCが成り立つ三角形の形
14:29 asinA=bsinBが成り立つ三角形の形
18:43 sinA=2cosBsinCが成り立つ三角形の形
23:11 acosA=bcosBが成り立つ三角形の形

単元: #数Ⅰ#図形と計量#三角比への応用(正弦・余弦・面積)
指導講師: 理数個別チャンネル
問題文全文(内容文):
△ABCにおいて,sinA=cosBsinCが成り立つとき,この三角形はどのような形をしているか。
△ABCにおいて,次の等式が成り立つとき,この三角形はどのような形をしているか。
(1) asinA=bsinB
(2) sinA=2cosBsinC
(3) acosA=bcosB
投稿日:2024.02.07

<関連動画>

【高校数学】いろんな方法で因数分解してみた #Shorts

アイキャッチ画像
単元: #数Ⅰ#数と式#式の計算(整式・展開・因数分解)#数学(高校生)
指導講師: 数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
$x^5+x^4+x^3+x^2+x+1$

因数分解せよ。
この動画を見る 

超絶良問 どっちがでかい?その差僅か0.0005

アイキャッチ画像
単元: #数Ⅰ#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
どちらが大きいか?
$\sqrt{2022}+\sqrt{2052}$ vs $\sqrt{2032}+\sqrt{2042}$
この動画を見る 

【数Ⅰ】数と式:絶対値の外し方のルールを分かりやすく教えます!!

アイキャッチ画像
単元: #数Ⅰ#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
絶対値を外すとき、中身が負ならマイナスを取るって思っていませんか?それは危険です!!この動画を見れば文字が来ても大丈夫!もう符号ミスはしない!!
この動画を見る 

一発でできる!二重根号のはずし方

アイキャッチ画像
単元: #数Ⅰ#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
二重根号のはずし方に関して解説していきます.
この動画を見る 

福田の数学〜早稲田大学2022年商学部第1問(2)〜対称式と最大値

アイキャッチ画像
単元: #数Ⅰ#数Ⅱ#大学入試過去問(数学)#数と式#図形と方程式#軌跡と領域#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\large\boxed{1}}\ (2)実数x,yがx^2+y^2\leqq 3を満たしているとき、x-y-xyの最大値は\boxed{\ \ イ\ \ }である。
\end{eqnarray}
この動画を見る 
PAGE TOP