高校数学:数Ⅰ:図形と計量:三角比への応用:「三角形の形状」の考え方! - 質問解決D.B.(データベース)

高校数学:数Ⅰ:図形と計量:三角比への応用:「三角形の形状」の考え方!

問題文全文(内容文):
△ABCにおいて,sinA=cosBsinCが成り立つとき,この三角形はどのような形をしているか。
△ABCにおいて,次の等式が成り立つとき,この三角形はどのような形をしているか。
(1) asinA=bsinB
(2) sinA=2cosBsinC
(3) acosA=bcosB
チャプター:

0:00 オープニング
0:01 解法の確認
8:33 sinA=cosBsinCが成り立つ三角形の形
14:29 asinA=bsinBが成り立つ三角形の形
18:43 sinA=2cosBsinCが成り立つ三角形の形
23:11 acosA=bcosBが成り立つ三角形の形

単元: #数Ⅰ#図形と計量#三角比への応用(正弦・余弦・面積)
指導講師: 理数個別チャンネル
問題文全文(内容文):
△ABCにおいて,sinA=cosBsinCが成り立つとき,この三角形はどのような形をしているか。
△ABCにおいて,次の等式が成り立つとき,この三角形はどのような形をしているか。
(1) asinA=bsinB
(2) sinA=2cosBsinC
(3) acosA=bcosB
投稿日:2024.02.07

<関連動画>

【数Ⅰ】集合と命題:実数全体を全体集合とし、その部分集合A, B, CをA={x| -3≦x≦5}, B={x| |x|<4}, C={x| k-7≦x≦k+3} (kは定数)とする。

アイキャッチ画像
単元: #数Ⅰ#数と式#集合と命題(集合・命題と条件・背理法)#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
実数全体を全体集合とし、その部分集合A, B, CをA={x| -3≦x≦5}, B={x| |x|<4}, C={x| k-7≦x≦k+3} (kは定数)とする。
(1)次の集合を求めよう。
(ア)Bバー
(イ)A∪Bバー
(ウ)A∩Bバー。
(2)A⊂Cとなるkの値の範囲を求めよう。
この動画を見る 

【数Ⅰ】相反方程式の解法(偶数次数の場合)

アイキャッチ画像
単元: #数Ⅰ#数と式#式の計算(整式・展開・因数分解)#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
相反方程式という特殊な方程式の解法を説明します。こちらの動画では定義の説明と、偶数次数の場合の解法を紹介しています。
この動画を見る 

2次関数 4STEP数Ⅰ 162 2次関数の最大最小・文章題3【マコちゃんねるがていねいに解説】

アイキャッチ画像
単元: #数Ⅰ#2次関数#2次関数とグラフ#数学(高校生)
教材: #4STEP(4ステップ)数学#4STEP数学Ⅰ+AのB問題解説(新課程2022年以降)#2次関数
指導講師: 理数個別チャンネル
問題文全文(内容文):
$AB=6\sqrt{3}、CA=9、∠C=90°$の三角形ABCがある。
$点Pは頂点CからAまで辺CA上を毎秒3の速さで進む。$
$点QはPと同時に頂点Bを出発し、頂点Cまで辺BC上を毎秒\sqrt{3}の速さで進む。$
$このP,Q間の距離の最小値を求めよ。$

この動画を見る 

2次関数 4STEP数Ⅰ 191,192 2次関数の点の通過【野本さんちのツトムくんがていねいに解説】

アイキャッチ画像
単元: #数Ⅰ#2次関数#2次方程式と2次不等式#数学(高校生)
教材: #4STEP(4ステップ)数学#4STEP数学Ⅰ+AのB問題解説(新課程2022年以降)#2次関数
指導講師: 理数個別チャンネル
問題文全文(内容文):
191 次の条件を満たす放物線の方程式を求めよ。
 (1) 3点(-4,0),(-2,0),(0,-4)を通る。
 (2) 点(2,0)でx軸に接し、点(-2,12)を通る。
192 a,b,cの値を入力すると、関数 y=ax²+bx+c のグラフが表示されるコンピュータソフトがある。
あるa,b,cの値を入力すると、グラフは図のように表示された。
(1) a, b, c, b²-4ac, a+b+c の符号をいえ。
(2) このa,bの値を変えずに、cの値だけを変化させたとき、変わらないものを次の中からすべて選べ。
また、変わらない理由を説明せよ。
  ① グラフとx軸の共有点の個数
  ② グラフの頂点のx座標の符号
  ③ グラフの頂点のy座標の符号
この動画を見る 

【マコちゃんねるがていねいに解説】2次関数 4STEP数Ⅰ 143 二次関数の対称移動(3)

アイキャッチ画像
単元: #数Ⅰ#2次関数#2次関数とグラフ#数学(高校生)
教材: #4STEP(4ステップ)数学#4STEP数学Ⅰ+AのB問題解説(新課程2022年以降)#2次関数
指導講師: 理数個別チャンネル
問題文全文(内容文):
放物線y=2x²-4x+1を、直線y=-2に関して対称移動して得られる放物線の方程式を求めよ。
この動画を見る 
PAGE TOP