角度を求める C 日大桜ヶ丘 - 質問解決D.B.(データベース)

角度を求める C 日大桜ヶ丘

問題文全文(内容文):
$\angle A=?$
*図は動画内参照

日本大学櫻丘高等学校
単元: #数学(中学生)#数Ⅰ#図形と計量#三角比(三角比・拡張・相互関係・単位円)#平面図形#角度と面積#高校入試過去問(数学)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
$\angle A=?$
*図は動画内参照

日本大学櫻丘高等学校
投稿日:2020.12.31

<関連動画>

気付けば一瞬!!円と角の和

アイキャッチ画像
単元: #数Ⅰ#図形と計量#三角比(三角比・拡張・相互関係・単位円)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
$\angle x + \angle y = ?$
*図は動画内参照
この動画を見る 

「二次不等式の解の配置①」【高校数学ⅠA】を宇宙一わかりやすく

アイキャッチ画像
単元: #数Ⅰ#2次関数#2次方程式と2次不等式#数学(高校生)
指導講師: ハクシ高校【数学科】良問演習チャンネル
問題文全文(内容文):
2次方程式$x^2-2ax-2a+3=0$が次のような解をもつとき、定数$a$の値の範囲を求めよ。
(1)異なる2つの正の解をもつ
(2)異なる2つの負の解をもつ
(3)$x \lt -2$の範囲に異なる2解をもつ
(4)$-1 \leqq x \leqq 2$の範囲に異なる2つの解をもつ
(5)正の解と負の解をそれぞれ1つずつもつ
(6)$0 \lt x \lt 2,2 \lt x \lt 4$の範囲に1つずつ解をもつ
(7)$-2 \leqq x \leqq 1,3 \leqq x \leqq 5$の範囲に1つずつ解をもつ
(8)2解のうちの1つを$1 \lt x \lt 5$の範囲にもつ
(9)$-4 \leqq x \leqq -2$の範囲に解をもつ
この動画を見る 

誘導にのれるか、のれないか。弘学館

アイキャッチ画像
単元: #数Ⅰ#数と式#式の計算(整式・展開・因数分解)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
$45^2 = ?$
$x^2 - 2 \sqrt2x -2023 = 0$を解け

弘学館高等学校
この動画を見る 

連立指数方程式

アイキャッチ画像
単元: #数Ⅰ#数Ⅱ#数と式#式の計算(整式・展開・因数分解)#指数関数と対数関数#指数関数
指導講師: 鈴木貫太郎
問題文全文(内容文):
$ \begin{eqnarray}
\left\{
\begin{array}{l}
3^{\frac{x}{2}}-2^y=7 \\
3^x-4^y=77
\end{array}
\right.
\end{eqnarray}$
これを解け.
この動画を見る 

数と式 真偽の調べ方【いつものシミズ君がていねいに解説】

アイキャッチ画像
単元: #数Ⅰ#数と式#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
a,bは実数とする。次の命題の真偽を求めよ。
(1)$ab=0$ならば$a^2+b^2=0$である。
(2)$a^2=4$ならば$\vert a+1\vert \geqq 1$である。
(3)$ab$が有理数であるならば、a、bはともに有理数である。
(4)$a+b、ab$がともに有理数ならば、a、bはともに有理数である。

全体集合を$U$とし、条件$p、q$を満たす全体の集合を、それぞれ$P.Q$とする。
命題$p$(補集合)⇒$q$が真であるとき、$P、Q$について常に成り立つ事をすべて選べ。

①$P=Q$
②$Q⊂P$
③$Q$(補集合)$⊂P$
④$P⊂Q$(補集合)
⑤$P∪Q$(補集合)$=P$
⑥$P∪Q$(補集合)$=Q$(補集合)
⑦$P∩Q=∅$
⑧$P∪Q=U$
この動画を見る 
PAGE TOP