【For you 動画-10】 中3-二次方程式の利用 - 質問解決D.B.(データベース)

【For you 動画-10】  中3-二次方程式の利用

問題文全文(内容文):
①縦の長さが横より$3cm$短い長方形$A$ がある。
この長方形の縦を$5cm$長く、横を $2cm$短くしてできた長方形$B$の面積は、$A$より $17cm$大きい。$A$の縦と横は?

②連続する$3$つの自然数がある。
もっとも大きい数の$2$乗から、もっとも小さい数の
$5$倍をひいた差は、まん中の数の$3$倍に$33$を足したものに等しい。
連続する$3$つの自然数は?

◎2次方程式$x^2-4x-6=0$の
2つの解を$a.b$(ただし$a \gt b$)とするとき、下の値は?
③$a+b$
④$ab$
⑤$a^2+b^2$
⑥$a-b$
単元: #数学(中学生)#中3数学#2次方程式
指導講師: とある男が授業をしてみた
問題文全文(内容文):
①縦の長さが横より$3cm$短い長方形$A$ がある。
この長方形の縦を$5cm$長く、横を $2cm$短くしてできた長方形$B$の面積は、$A$より $17cm$大きい。$A$の縦と横は?

②連続する$3$つの自然数がある。
もっとも大きい数の$2$乗から、もっとも小さい数の
$5$倍をひいた差は、まん中の数の$3$倍に$33$を足したものに等しい。
連続する$3$つの自然数は?

◎2次方程式$x^2-4x-6=0$の
2つの解を$a.b$(ただし$a \gt b$)とするとき、下の値は?
③$a+b$
④$ab$
⑤$a^2+b^2$
⑥$a-b$
投稿日:2013.03.31

<関連動画>

【裏技】これすげぇ

アイキャッチ画像
単元: #算数(中学受験)#計算と数の性質#いろいろな計算#数学(中学生)#中1数学#中2数学#中3数学#約数・倍数を利用する問題#数学(高校生)
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
約分のテクニック紹介動画です
この動画を見る 

【数学】中3-25 二次方程式②(応用編)

アイキャッチ画像
単元: #数学(中学生)#中3数学#2次方程式
指導講師: とある男が授業をしてみた
問題文全文(内容文):
計算せよ。
①$ x ^ 2 = 9$
②$(x + 4) ^ 2 = 5 $
③ $(x - 2) ^ 2 = 25$
④$ 3 (x + 1) ^ 2 = 6$
⑤$4 (x + 6) ^ 2 - 36 = 0$
⑥$x ^ 2 + 4x = 14$
⑦$ x ^ 2 - 6x = 3$
⑧ $x ^ 2 + 2x - 15 = 0$
この動画を見る 

【分かる人だけ…!】二次方程式:早稲田大学系属早稲田実業学校高等部~全国入試問題解法

単元: #数学(中学生)#2次方程式#高校入試過去問(数学)#早稲田大学系属早稲田実業学校高等部
指導講師: 高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
$3x^2-4x-2=0$の2つの解を$a,b$とするとき, $(3a^2-4a+2)(6b^2-8b)$の値を求めよ
この動画を見る 

【高校受験対策】数学-関数15

アイキャッチ画像
単元: #数学(中学生)#中3数学#2次関数
指導講師: とある男が授業をしてみた
問題文全文(内容文):
右の図で、曲線は関数$y = \dfrac{1}{2}x^2$のグラフです。
次の各問に答えなさい。

①点$P$は曲線上の$x \gt 0$の部分にあります。
点$P$の$x$座標が4のとき、点$P$の座標を求めなさい。

②点$Q$は曲線上の$x\lt 0$の部分にあります。
点$Q$の$y$座標が18 のとき、点$Q$の座標を求めなさい。

③ 四角形$ABCD$は、辺$AD$と辺$BC$がともに$y$軸と平行な台形で、
点$A$と点$B$は曲線上の$x \gt 0$の部分に、点$C$と点$D$は$x$軸上にあります。
点$D$は、点$C$の右側にあり、$CD = 2cm $です。
四角形$ABCD$の面積が$17cm^2$のとき、
点$A$の座標を求めなさい。
ただし、座標軸の単位の長さを$1cm$とします。

図は動画内参照
この動画を見る 

【高校受験対策】数学-死守21

アイキャッチ画像
単元: #数学(中学生)#中2数学#中3数学#式の計算(単項式・多項式・式の四則計算)#式の計算(展開、因数分解)#円#文章題#文章題その他#立体図形#体積・表面積・回転体・水量・変化のグラフ#表とグラフ#表とグラフ・集合
指導講師: とある男が授業をしてみた
問題文全文(内容文):
①$7-(-5)$を計算しなさい.

②$(- 4) ^ 2 + 3 \times (- 2)$を計算しなさい.

③$\dfrac{3}{2} - 6y - \dfrac{1}{4} (3x-8y)$を計算しなさい.

④比例式$ 2:5 = (x - 2):(x + 7)$をみたす$x$の値を求めなさい.

⑤$\sqrt{45} - \sqrt{20} + \dfrac{15}{\sqrt5}$ を計算しなさい.

⑥$(x + 1)(x - 7) - 20$を因数分解しなさい.

⑦$a$の本の鉛筆を,$b$人の子どもに1人7本ずっ配ると3本余るとき,
$b$を$a$の式で表しなさい.

⑧ 右の図で,5点$A,B,C,D,E$は円$O$の円周上にあり,
$\angle BAC = 24°,\angle CED = 38°$,
$\stackrel{\huge\frown}{CD}=\stackrel{\huge\frown}{DE}$である.
線分$BD$と線分$CE$の交点を$F$とするとき,$\angle CFD$の大きさを求めなさい.

⑨下の表には,6人の生徒$A~F$のそれぞれの身長から,
160cmをひいた値が示されている/
この表をもとに,これら6人の生徒の身長の平均を求めたところ161.5cmであった.
このとき,生徒$F$の身長を求めなさい.

⑩半径が3cmの球と体積の等しい円柱がある.
この円柱の底面の半径が4cmのとき,円柱の高さを求めなさい.

図は動画内参照
この動画を見る 
PAGE TOP