#広島市立大学 2010年 #不定積分 #Shorts - 質問解決D.B.(データベース)

#広島市立大学 2010年 #不定積分 #Shorts

問題文全文(内容文):
$\displaystyle \int \displaystyle \frac{x}{(x+1)^5} dx$

出典:2010年広島市立大学
単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#数学(高校生)#広島市立大学
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int \displaystyle \frac{x}{(x+1)^5} dx$

出典:2010年広島市立大学
投稿日:2024.03.08

<関連動画>

福田の数学〜格子点の個数を数えるコツ〜北里大学2023年医学部第1問(1)〜複素数平面上の円の内部にある格子点

アイキャッチ画像
単元: #大学入試過去問(数学)#複素数平面#複素数平面#学校別大学入試過去問解説(数学)#北里大学#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
( 1 ) 8 の 6 乗根のうち、実部が正で虚部が負である複素数をzとする。このとき、$\fbox{ア}$であり、$z+z^5=\fbox{イ}$。複素数平面において、点zを中心とする円Cが実軸と2点a,bで交わり、$|a-b|=\sqrt{30}$を満たしている。このとき、円Cの半径 r は$r=\fbox{ウ}$である。また、円Cの内部にある複素数のうち、実部、虚部ともに 0 以上の整数であるものの個数は$\fbox{エ}$である。

2023北里大学医過去問
この動画を見る 

確率、等比数列 巴戦は平等な優勝決定法か?(類)東大、神戸大

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#確率#数列#数列とその和(等差・等比・階差・Σ)#学校別大学入試過去問解説(数学)#数学(高校生)#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
確率、等比数列 巴戦は平等な優勝決定法か?

(類)東大、神戸大
この動画を見る 

大学入試問題#472「最後の計算量を減らすには?」 弘前大学(2012) #不定積分

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#不定積分#学校別大学入試過去問解説(数学)#数学(高校生)#弘前大学#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int \displaystyle \frac{e^{4x}}{e^x+1} dx$

出典:2012年弘前大学 入試問題
この動画を見る 

福田の数学〜立教大学2024年経済学部第1問(4)〜三角関数の計算

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#三角関数#加法定理とその応用#学校別大学入試過去問解説(数学)#立教大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$\displaystyle \theta = \frac{\pi}{12}$ のとき、$\displaystyle \frac{1}{\tan \theta} - \tan \theta$ の値は $\fbox{キ}$ である。
この動画を見る 

指数・対数 × 整数問題!落としたくない問題です【大阪大学】【数学 入試問題】

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#指数関数と対数関数#学校別大学入試過去問解説(数学)#大阪大学#数学(高校生)
指導講師: 数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
連立方程式$\begin{eqnarray}
\left\{
\begin{array}{l}
2^x+3^y=43 \\
\log_{ 2 } x-\log_{ 3 } y=1
\end{array}
\right.
\end{eqnarray}$を考える。

(1)この連立方程式を満たす自然数$x,y$の組を求めよ。
(2)この連立方程式を満たす正の実数$x,y$は、(1)で求めた自然数の組以外に存在しないことを示せ。

大阪大過去問
この動画を見る 
PAGE TOP