【中学数学】連立方程式の裏技の証明~式変形不要な解き方~ 2-4.5【中2数学】 - 質問解決D.B.(データベース)

【中学数学】連立方程式の裏技の証明~式変形不要な解き方~ 2-4.5【中2数学】

問題文全文(内容文):
連立方程式の裏技の証明 式変形不要な解き方の説明動画です
チャプター:

00:00 はじまり

00:22 証明スタート

05:18 まとめ

05:43 まとめノート

単元: #数学(中学生)#中2数学#連立方程式
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
連立方程式の裏技の証明 式変形不要な解き方の説明動画です
投稿日:2021.05.07

<関連動画>

高等学校入学試験予想問題:秋田県公立高等学校~全部入試問題

アイキャッチ画像
単元: #数学(中学生)#中1数学#中2数学#中3数学#式の計算(単項式・多項式・式の四則計算)#2次方程式#空間図形#相似な図形#文章題#文章題その他#高校入試過去問(数学)
指導講師: 高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
$ \boxed{1}$
(1)$\dfrac{15}{2}\times \left(-\dfrac{4}{5}\right)$
(2)$ 10a-(6a+8)$
(3)$ 27ab^2\div 9ab $
(4)二次方程式$ x^2-3x+1=0$を解け.

$ \boxed{2}$
(1)底面が1辺6cmの正方形,体積$ 96cm^3$の四角錐の高さは?
(2)$ 4 \lt \sqrt a \lt \dfrac{13}{3}$に当てはまるaの値をすべて求めよ.
(3)$ \ell \parallel m $のとき,$ \angle x $は?

$ \boxed{3}$
n番目の白タイルの枚数をnの式で表せ.
この動画を見る 

分母に文字がある連立方程式 東邦大附属東邦

アイキャッチ画像
単元: #数学(中学生)#中2数学#連立方程式#高校入試過去問(数学)
指導講師: 数学を数楽に
問題文全文(内容文):
連立方程式を解け
\begin{eqnarray}
\left\{
\begin{array}{l}
x + \frac{1}{y} = 1 \\
\frac{1}{x} + y = 4
\end{array}
\right.
\end{eqnarray}

東邦大学付属東邦高等学校
この動画を見る 

2023高校入試数学解説87問目 展開図から組み立てる 埼玉県学校選択問題(改)

アイキャッチ画像
単元: #数学(中学生)#中2数学#平行と合同#高校入試過去問(数学)
指導講師: 数学を数楽に
問題文全文(内容文):
3つの合同な台形と2つの相似な正三角形
組み立てた立体の頂点の数は?
辺の数は?
辺ABとねじれの位置になる辺の数は?
*図は動画内参照

2023埼玉県
この動画を見る 

【中学数学】数学用語チェック絵本 act2 vol.6 確率

アイキャッチ画像
単元: #数学(中学生)#中2数学#確率
指導講師: 理数個別チャンネル
問題文全文(内容文):
確率の用語をチェック!あまりないですが…。
この動画を見る 

【高校受験対策】数学-死守21

アイキャッチ画像
単元: #数学(中学生)#中2数学#中3数学#式の計算(単項式・多項式・式の四則計算)#式の計算(展開、因数分解)#円#文章題#文章題その他#立体図形#体積・表面積・回転体・水量・変化のグラフ#表とグラフ#表とグラフ・集合
指導講師: とある男が授業をしてみた
問題文全文(内容文):
①$7-(-5)$を計算しなさい.

②$(- 4) ^ 2 + 3 \times (- 2)$を計算しなさい.

③$\dfrac{3}{2} - 6y - \dfrac{1}{4} (3x-8y)$を計算しなさい.

④比例式$ 2:5 = (x - 2):(x + 7)$をみたす$x$の値を求めなさい.

⑤$\sqrt{45} - \sqrt{20} + \dfrac{15}{\sqrt5}$ を計算しなさい.

⑥$(x + 1)(x - 7) - 20$を因数分解しなさい.

⑦$a$の本の鉛筆を,$b$人の子どもに1人7本ずっ配ると3本余るとき,
$b$を$a$の式で表しなさい.

⑧ 右の図で,5点$A,B,C,D,E$は円$O$の円周上にあり,
$\angle BAC = 24°,\angle CED = 38°$,
$\stackrel{\huge\frown}{CD}=\stackrel{\huge\frown}{DE}$である.
線分$BD$と線分$CE$の交点を$F$とするとき,$\angle CFD$の大きさを求めなさい.

⑨下の表には,6人の生徒$A~F$のそれぞれの身長から,
160cmをひいた値が示されている/
この表をもとに,これら6人の生徒の身長の平均を求めたところ161.5cmであった.
このとき,生徒$F$の身長を求めなさい.

⑩半径が3cmの球と体積の等しい円柱がある.
この円柱の底面の半径が4cmのとき,円柱の高さを求めなさい.

図は動画内参照
この動画を見る 
PAGE TOP