大学入試問題#187 慶應義塾大学(2006) 定積分 - 質問解決D.B.(データベース)

大学入試問題#187 慶應義塾大学(2006) 定積分

問題文全文(内容文):
$\displaystyle \int_{e}^{e^e}\displaystyle \frac{log(log\ x)}{x\ log\ x}\ dx$を計算せよ。

出典:2006年慶應義塾大学 入試問題
単元: #大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{e}^{e^e}\displaystyle \frac{log(log\ x)}{x\ log\ x}\ dx$を計算せよ。

出典:2006年慶應義塾大学 入試問題
投稿日:2022.05.03

<関連動画>

大学入試問題#406「(1)がなくて単発の出題だときつかった」 東京医科大学(2) 2022 #定積分

アイキャッチ画像
単元: #積分とその応用#定積分#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{-\frac{\pi}{4}}^{\frac{\pi}{4}} \displaystyle \frac{\sqrt{ 4+5\tan|x| }}{1-\sin\ x}\ dx$

出典:2022年東京医科大学 入試問題
この動画を見る 

大学入試問題#108 弘前大学(2018) 定積分

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#数学(高校生)#弘前大学#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$a \gt 0$
$\displaystyle \int_{0}^{1}\displaystyle \frac{dx}{(e^{2x}+a)(e^{-2x}+a)}\ $を計算せよ。

出典:2018年弘前大学 入試問題
この動画を見る 

福田のおもしろ数学358〜定積分の計算

アイキャッチ画像
単元: #積分とその応用#定積分#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
$I=\int_0^{\frac{\pi}{2}} \frac{\sin^3 x}{\sin x + \cos x} dx$の値を求めて下さい。
この動画を見る 

大学入試問題#425「これは要確認!」 奈良県立医科大学2014 #微積の応用

アイキャッチ画像
単元: #積分とその応用#定積分#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{0}^{x} t\ f(x-t)dt=e^x-x-1$を満たす$f(x)$を求めよ

出典:2014年奈良県立医科大学 入試問題
この動画を見る 

大学入試問題#395「使う技は、関数から・・・」 大阪市立大学2009 #極限 誘導は概要欄

アイキャッチ画像
単元: #関数と極限#積分とその応用#関数の極限#定積分#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
(1)
$0 \leqq x \leqq \displaystyle \frac{\pi}{2}$のとき
$\sin\ x \geqq \displaystyle \frac{2}{\pi}x$を示せ

(2)
$\displaystyle \lim_{ n \to \infty } \displaystyle \int_{0}^{\frac{\pi}{2}} e^{-n\ \sin\ x}dx=0$を示せ

出典:2009年大阪市立大学 入試問題
この動画を見る 
PAGE TOP