【数学】2022年度神奈川県立高校入試数学大問5アイ - 質問解決D.B.(データベース)

【数学】2022年度神奈川県立高校入試数学大問5アイ

問題文全文(内容文):
大,小2つのさいころを同時に1回投げ,大きいさいころの出た目の数をa,小さいさいころの出た目の数をbとする。出た目の数によって,線分PQ上に点Rを,PR:RQ=a:bとなるようにとり,線分PRを1辺とする正方形をX,線分RQを1辺とする正方形をYとし,この2つの正方形の面積を比較する。
(ア) Xの面積とYの面積が等しくなる確率は□である。
(イ) Xの面積がYの面積より25cm²以上大きくなる確率は□である。
チャプター:

0:00 オープニング
0:06 条件整理
0:51 (ア)の考え方
2:07 (イ)の考え方
2:37 ゾロ目の消去
3:09 a<bの消去
3:42 条件に適する目の数え上げ
5:24 同列を全て〇にできる理由
8:53 解答

単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
大,小2つのさいころを同時に1回投げ,大きいさいころの出た目の数をa,小さいさいころの出た目の数をbとする。出た目の数によって,線分PQ上に点Rを,PR:RQ=a:bとなるようにとり,線分PRを1辺とする正方形をX,線分RQを1辺とする正方形をYとし,この2つの正方形の面積を比較する。
(ア) Xの面積とYの面積が等しくなる確率は□である。
(イ) Xの面積がYの面積より25cm²以上大きくなる確率は□である。
投稿日:2023.01.17

<関連動画>

大学入試問題#355「定番の定食」 山梨大学2019 #定積分

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#山梨大学#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{0}^{1} \sqrt{ 4-3x^2 }\ dx$

出典:2019年山梨大学 入試問題
この動画を見る 

東海大(医)えっ!そんなんでいいの?

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#数学(高校生)#東海大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
自然数$n^3+100$が$n+10$で割り切れるような最大の自然数$n$を求めよ.

東海大(医)過去問
この動画を見る 

一橋大 確率

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#確率#学校別大学入試過去問解説(数学)#一橋大学#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$A,B$2つの箱にそれぞれ$1~n$までの札が各1枚ずつ入っている。
$A,B$それぞれから2枚ずつ取り出す

(1)
同じ数の札がある確率を求めよ

(2)
$A,B$それぞれの小さいほうの数が同じである確率を求めよ

出典:一橋大学 過去問
この動画を見る 

大学入試問題#828「式変形難しめの良問!」 #久留米大学医学部(2024) #数列

アイキャッチ画像
単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#数学(高校生)#久留米大学
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \sum_{k=1}^n \displaystyle \frac{3k+5}{(3k-1)(3k+2)2^{k+1}}$

出典:2024年久留米大学医学部
この動画を見る 

福田の数学〜早稲田大学2022年理工学部第4問〜正八面体の内部に配置した6個の球の和集合の体積と共通部分の体積

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#図形の性質#積分とその応用#面積・体積・長さ・速度#学校別大学入試過去問解説(数学)#空間における垂直と平行と多面体(オイラーの法則)#早稲田大学#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
${\large\boxed{4}}$一辺の長さが$\sqrt3+1$である正八面体の頂点を右図(※動画参照)
のように$P_1,P_2,P_3,P_4,P_5,P_6$とする。$i=1,2,\ldots,6$に対して
$P_i$以外の5点を頂点とする四角錐のすべての面に
内接する球(内部含む)を$B_i$とする。$B_1$の体積をXとし、$B_1$と
$B_2$の共通部分の体積をYとし、$B_1,B_2,B_3$の共通部分の体積をZ
とする。さらに$B_1,B_2,\ldots,B_n$を合わせて得られる立体の体積を
$V_n\ \ (n=2,3,\ldots,6)$とする。以下の問いに答えよ。
(1)$V_n=aX+bY+cZ$となる整数a,b,cを$n=2,3,6$の場合
について求めよ。
(2)Xの値を求めよ。
(3)$V_2$の値を求めよ。

2022早稲田大学理工学部過去問
この動画を見る 
PAGE TOP