大学入試問題#273 日本大学(2010) #微分 #定積分 - 質問解決D.B.(データベース)

大学入試問題#273 日本大学(2010) #微分 #定積分

問題文全文(内容文):
$0 \leqq x \leqq \pi$
$f(x)=e^{-\frac{3}{4}\sin^2x}\sin2x$
$x=\alpha$で$f(x)$は最大値をとる

(1)$\sin\alpha$の値

(2)$\displaystyle \int_{0}^{\alpha}f(x)dx$

出典:2013年日本大学 入試問題
チャプター:

00:00 問題提示
00:17 本編スタート
08:44 作成した解答①
08:56 作成した解答②
09:06 作成した解答③
09:17 エンディング

単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#日本大学#数学(高校生)
指導講師: ますただ
問題文全文(内容文):
$0 \leqq x \leqq \pi$
$f(x)=e^{-\frac{3}{4}\sin^2x}\sin2x$
$x=\alpha$で$f(x)$は最大値をとる

(1)$\sin\alpha$の値

(2)$\displaystyle \int_{0}^{\alpha}f(x)dx$

出典:2013年日本大学 入試問題
投稿日:2022.08.06

<関連動画>

王道の整数問題 産業医科大学2024 大学入試問題#927

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#数学(高校生)#産業医科大学
指導講師: ますただ
問題文全文(内容文):
$\dfrac{b^2}{a}+\dfrac{a}{b}=6$を満たす
自然数の組$(a,b)$のうち$a+b$の最小値を求めよ.

2024産業医科大学過去問題
この動画を見る 

福田の数学〜慶應義塾大学2023年薬学部第1問(2)〜折れ線の最小と内接円の半径

アイキャッチ画像
単元: #数A#数Ⅱ#大学入試過去問(数学)#図形の性質#周角と円に内接する四角形・円と接線・接弦定理#図形と方程式#三角関数#点と直線#加法定理とその応用#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{1}$ (2)aは正の定数とする。原点をOとするxy平面上に直線l:y=$\frac{2}{3}$xと2点A(0,a), B(17,20)がある。直線l上にとった動点Pと2点A,Bそれぞれを線分で結び、2つの線分の長さの和AP+BPが最小となったとき、$\angle APO$=45°であった。AP+BPが最小であるとき、直線BPを表す方程式はy=$\boxed{\ \ ウ\ \ }$であり、三角形ABPの内接円の半径は$\boxed{\ \ エ\ \ }$である。

2023慶應義塾大学薬学部過去問
この動画を見る 

東京海洋大 三次方程式

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#平均変化率・極限・導関数#学校別大学入試過去問解説(数学)#東京海洋大学#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$x^3-12x^2+41x-m=0$
が3つの整数解をもつような
$m$をすべて求めよ。

東京海洋大過去問
この動画を見る 

大学入試問題#419「複素数の基本的な性質を網羅!」 東海大学医学部2017 #複素数

アイキャッチ画像
単元: #大学入試過去問(数学)#複素数平面#複素数平面#学校別大学入試過去問解説(数学)#数学(高校生)#数C#東海大学
指導講師: ますただ
問題文全文(内容文):
$\alpha=\displaystyle \frac{2+\sqrt{ 5 }i}{3}$のとき
$27(1+\displaystyle \frac{1}{\alpha}+\displaystyle \frac{1}{\alpha^2}+\displaystyle \frac{1}{\alpha^3})$の値を求めよ

出典:2017年東海大学医学部 入試問題
この動画を見る 

高知大学 二次関数 整数問題 Mathematics Japanese university entrance exam

アイキャッチ画像
単元: #数Ⅰ#数A#大学入試過去問(数学)#2次関数#2次関数とグラフ#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#数学(高校生)#高知大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
$p,q$素数$f(x)=x^2+px+q$が次の条件を満たす

(ア)
ある実数$a$に対して$f(a) \lt 0$

(イ)
任意の整数$n$に対して$f(n) \geqq 0$

$f(x)$を求めよ

出典:高知大学 過去問
この動画を見る 
PAGE TOP