【1/1】中3冬特訓8日目 - 質問解決D.B.(データベース)

【1/1】中3冬特訓8日目

問題文全文(内容文):
Q.
右の図のように、$AB=\sqrt{10}cm$、$BC=3\sqrt{2}cm$、$CA=4cm$の $△ABC$の外接円の中心を$o$とし、直線$AO$と外接円との交点のうち、$A$と異なるものを$D$とする。
また、$A$から辺$BC$へひいた垂線と$BC$との交点を$H$とし、$AD$と$BC$の交点を$E$とする。

①$BH$の長さを求めよ。
②外接円の半径を求めよ。
③$BE:EC$を求めよ。
単元: #中3数学
指導講師: とある男が授業をしてみた
問題文全文(内容文):
Q.
右の図のように、$AB=\sqrt{10}cm$、$BC=3\sqrt{2}cm$、$CA=4cm$の $△ABC$の外接円の中心を$o$とし、直線$AO$と外接円との交点のうち、$A$と異なるものを$D$とする。
また、$A$から辺$BC$へひいた垂線と$BC$との交点を$H$とし、$AD$と$BC$の交点を$E$とする。

①$BH$の長さを求めよ。
②外接円の半径を求めよ。
③$BE:EC$を求めよ。
投稿日:2019.01.01

<関連動画>

【「分かったつもり」が命取り!】二次方程式:関西学院高等部~全国入試問題解法

アイキャッチ画像
単元: #数学(中学生)#中3数学#2次方程式#高校入試過去問(数学)
指導講師: 高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
方程式$(x+1)(x+2)(x+3)(x+4)=x^4+10x^3+9$を解け.

関西学院高等部過去問
この動画を見る 

よく間違える平方根

アイキャッチ画像
単元: #数学(中学生)#中3数学#平方根
指導講師: 数学を数楽に
問題文全文(内容文):
4の平方根は?
$\sqrt 4 = ?$
この動画を見る 

【高校受験対策】数学-死守16

アイキャッチ画像
単元: #数学(中学生)#中2数学#中3数学#式の計算(単項式・多項式・式の四則計算)#式の計算(展開、因数分解)#確率#円
指導講師: とある男が授業をしてみた
問題文全文(内容文):
次の各問いに答えなさい.

①$-4+(-3)$を計算しなさい.

②$-\dfrac{1}{7}+\dfrac{2}{5}$を計算しなさい.

③$16ab^2 \div 8ab$を計算しなさい.

④$\sqrt{54}-\dfrac{42}{\sqrt6}$を計算しなさい.

⑤$(x+2)(x+3)-(x+4)^2$を計算しなさい.

⑥$(x-5)^2-7(x-5)+12$を因数分解しなさい.

⑦2次方程式$5x^2-3x-1=0$を解きなさい.

⑧$x=3-\sqrt7$のとき,
$x^2-6x+9$の値を求めなさい.

⑨関数$y=ax^2$について,
$x$の値が$-3$から$-1$まで増加するときの変化の割合が$-3$であった.
このとき,$a$の値を求めなさい.

⑩1から6までの目の出る大,小2つのさいころを同時に1回投げるとき,
出た目の数の和が9以上とならない確率を求めなさい.

⑪半径が$2cm$である球の体積を$Pcm^3$,l
半径が$3cm$である球の体積を$Qcm^3$とするとき,
$P$と$Q$の比を最も簡単な整数の比で表しなさい。.
ただし,円周率は$\pi$とする.

⑫ 右の図において,線分$AB$は円$O$の直径であり,
2点$C,D$は円$O$の周上の点である.
このとき,$△ABC$の大きさを求めなさい.
この動画を見る 

高等学校入学試験問題予想:法政大学第二高等学校~全部入試問題

アイキャッチ画像
単元: #数学(中学生)#中2数学#中3数学#式の計算(展開、因数分解)#2次方程式#確率#高校入試過去問(数学)
指導講師: 高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
$\boxed{1}$
因数分解せよ.

(1)$(x-2y)^2+(x+y)(x-5y)+y^2$
(2)$a=\dfrac{1}{\sqrt5+1},b=\dfrac{1}{\sqrt5-1}$のとき,$(a-4b)(b-4a)=?$

$\boxed{2}$
1~5までの数字が書かれたカードが2枚ずつ合計10枚ある.

(1)これらのカードを袋に入れてその中から同時に2枚取り出すとき,カードの数字の積が偶数となる確率は?
(2)$n$の3以上の自然数$\dfrac{4}{\sqrt n-\sqrt2}$の整数部分が2であるとき,
$n$として考えられる値を全て求めよ.

$\boxed{3}$
$PQ$と$D$の交点を$R$とする.
点$P,Q$の$x$座標を$p,q$とする.
直線$PQ$の傾きが,$C,D$の比例定数$a$と等しく,$R$が線分$PQ$の中点となる.
(1)点$A$の座標を$a$で表せ.
(2)$p+q=?$
(3)点$R$の座標を$a$で表せ.
(4)$p.q$の値

法政第二高校過去問
この動画を見る 

【中学数学】円周角の定理の逆~分かりやすく丁寧に~【中3数学】

アイキャッチ画像
単元: #数学(中学生)#中3数学#円
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
(1) 図におけるx, yの角度を求めよ
(2) 図におけるx, yの角度を求めよ
※図は動画内参照
この動画を見る 
PAGE TOP