19東京都採用試験(数学:対数) - 質問解決D.B.(データベース)

19東京都採用試験(数学:対数)

問題文全文(内容文):
2⃣-(2)
$2^x=3^y=18^z={}^3\sqrt6$
(1)$\frac{1}{x} + \frac{1}{y}$
(2)$\frac{1}{x} - \frac{1}{y}+\frac{2}{z}$
単元: #数Ⅱ#指数関数と対数関数#対数関数#数学(高校生)
指導講師: ますただ
問題文全文(内容文):
2⃣-(2)
$2^x=3^y=18^z={}^3\sqrt6$
(1)$\frac{1}{x} + \frac{1}{y}$
(2)$\frac{1}{x} - \frac{1}{y}+\frac{2}{z}$
投稿日:2020.06.26

<関連動画>

【数Ⅱ】【指数関数と対数関数】対数不等式1 ※問題文は概要欄

アイキャッチ画像
単元: #数Ⅱ#指数関数と対数関数#対数関数#数学(高校生)
教材: #4S数学#4S数学Ⅱ+BのB問題解説(新課程2022年以降)#指数関数と対数関数#中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
次の不等式を解け。
(1) $2\log_{0.1}{(x-1)} < \log_{0.1}{(7-x)}$
(2) $\log_{10}{(x-3)} + \log_{10}{x} \leq 1$
(3) $\log_{2}{(1-x)} + \log_{2}{(3-x)} < 1 + \log_{2}{3}$

次の方程式を解け。
(1) $2^x = 3^{2x-1}$
(2) $5^{2x} = 3^{x+2}$

次の方程式、不等式を解け。
(1) $(\log_{3}{x})^2 - \log_{2}{x^4} + 3 = 0$
(2) $(\log_{\frac{1}{2}}{x})^2 - \log_{\frac{1}{4}}x = 0$
(3) $(\log_{3}{x})^2 - \log_{9}{x} - 2 \leq 0$
(4) $(\log_{\frac{1}{3}}{x})^2 + \log_{\frac{1}{3}}{x^2} - 15 > 0$

次のxについての不等式を解け。
ただし、$a$ は 1 と異なる正の定数とする。
(1) $\log_{a}{(x+3)} < \log_{a}{(2x+2)}$
(2) $\log_{a}{(x^2 - 3x - 10)} \geq \log_{a}{(2x - 4)}$
この動画を見る 

【n進法】同じ桁数になるようなもの?【京都大学】

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#指数関数と対数関数#対数関数#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)
指導講師: 数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
ある自然数を八進法、九進法、十進法でそれぞれ表したとき、桁数がすべて同じになった。このような自然数で最大のものを求めよ。ただし、必要なら次を用いてよい。
0.3010<log₁₀2<0.3011 , 0.4771<log₁₀3<0.4772
この動画を見る 

【高校数学】数Ⅲ-98 対数関数の導関数①

アイキャッチ画像
単元: #数Ⅱ#指数関数と対数関数#対数関数#微分とその応用#色々な関数の導関数#数学(高校生)#数Ⅲ
指導講師: とある男が授業をしてみた
問題文全文(内容文):
$(\log x)’=①,\quad (\log_a x)'=②,\quad (\log \vert x \vert)'=③,$
$(\log_a \vert x \vert)'=④$

次の関数を微分せよ。

⑤$y=\log 6x$

⑥$y=\log(3x^2+1)$

⑦$y=x\log 2x$

⑧$y=\log_{10} (1-2x)$

⑨$y=\log \vert x^2-1 \vert$

⑩$y=\log_3 \vert x+5 \vert$
この動画を見る 

宮崎大 対数の基本

アイキャッチ画像
単元: #数Ⅱ#指数関数と対数関数#対数関数#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$\dfrac{2^{148}+1}{17}$は何桁か?

宮崎大過去問
この動画を見る 

福田の数学〜中央大学2023年経済学部第1問(4)〜対数の大小比較

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#指数関数と対数関数#対数関数#学校別大学入試過去問解説(数学)#中央大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{1}$ (4)次の3つの数A, B, Cを小さい順に並べよ。
A=$\frac{1}{2}\log_2\frac{1}{2}$, B=$\frac{1}{3}\log_2\frac{1}{3}$, A=$\frac{1}{6}\log_2\frac{1}{6}$
この動画を見る 
PAGE TOP