数学「大学入試良問集」【19−22 積分と不等式・無限級数の良問】を宇宙一わかりやすく - 質問解決D.B.(データベース)

数学「大学入試良問集」【19−22 積分と不等式・無限級数の良問】を宇宙一わかりやすく

問題文全文(内容文):
自然数$n$に対して$S(x)=\displaystyle \sum_{k=1}^n(-1)^{k-1}x^{2k-2},R(x)=\displaystyle \frac{(-1)^nx^{2n}}{1+x^2}$とする。
さらに$f(x)=\displaystyle \frac{1}{1+x^2}$とする。このとき、次の問いに答えよ。
(1)等式$\displaystyle \frac{0}{1}S(x)dx=\displaystyle \sum_{k=1}^n(-1)^{k-1}\displaystyle \frac{1}{2k-1}$が成り立つことを示せ。
(2)定積分$\displaystyle \int_{0}^{1}f(x)dx$の値を求めよ。
(3)等式$S(x)=f(x)-R(x)$が成り立つことを示せ。
(4)不等式$|\displaystyle \int_{0}^{1}R(x)dx| \leqq \displaystyle \frac{1}{2n+1}$が成り立つことを示せ。
(5)無限階級$1-\displaystyle \frac{1}{3}+\displaystyle \frac{1}{5}-\displaystyle \frac{1}{7}+・・・$の和を求めよ。
単元: #大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#数学(高校生)#山形大学#数Ⅲ
指導講師: ハクシ高校【数学科】良問演習チャンネル
問題文全文(内容文):
自然数$n$に対して$S(x)=\displaystyle \sum_{k=1}^n(-1)^{k-1}x^{2k-2},R(x)=\displaystyle \frac{(-1)^nx^{2n}}{1+x^2}$とする。
さらに$f(x)=\displaystyle \frac{1}{1+x^2}$とする。このとき、次の問いに答えよ。
(1)等式$\displaystyle \frac{0}{1}S(x)dx=\displaystyle \sum_{k=1}^n(-1)^{k-1}\displaystyle \frac{1}{2k-1}$が成り立つことを示せ。
(2)定積分$\displaystyle \int_{0}^{1}f(x)dx$の値を求めよ。
(3)等式$S(x)=f(x)-R(x)$が成り立つことを示せ。
(4)不等式$|\displaystyle \int_{0}^{1}R(x)dx| \leqq \displaystyle \frac{1}{2n+1}$が成り立つことを示せ。
(5)無限階級$1-\displaystyle \frac{1}{3}+\displaystyle \frac{1}{5}-\displaystyle \frac{1}{7}+・・・$の和を求めよ。
投稿日:2021.09.24

<関連動画>

大学入試問題#770「減点注意!」 千葉大学(2003) #微積の応用

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#積分とその応用#定積分#学校別大学入試過去問解説(数学)#不定積分・定積分#千葉大学#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$a$は定数とし、$n$は2以上の整数とする。
関数$f(x)=ax^n log\ x-ax(x \gt 0)$の最小値が-1のとき、定積分$\displaystyle \int_{1}^{e} f(x)\ dx$の値を$n$と$e$を用いて表せ。

出典:2003年千葉大学 入試問題
この動画を見る 

【高校数学】毎日積分39日目【難易度:★★】【毎日17時投稿】

アイキャッチ画像
単元: #積分とその応用#定積分#数学(高校生)#数Ⅲ
指導講師: 理数個別チャンネル
問題文全文(内容文):
$\int_1^2\frac{logx}{1+x^2}dx $
これを解け.
この動画を見る 

福田の数学〜早稲田大学2022年人間科学部第6問〜楕円を軸以外の直線で回転させた立体の体積

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#平面上の曲線#微分法と積分法#接線と増減表・最大値・最小値#微分とその応用#積分とその応用#2次曲線#関数の変化(グラフ・最大最小・方程式・不等式)#定積分#面積・体積・長さ・速度#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)#数C#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
${\large\boxed{6}}$直線$x+y=1$に接する楕円$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a \gt 0,\ b \gt 0)$がある。
このとき、$b^2=\boxed{\ \ ア\ \ }\ a^2+\boxed{\ \ イ\ \ }$である。
この楕円を直線$y=b$のまわりに1回転してできる立体の体積は、
$a=\frac{\sqrt{\boxed{\ \ ウ\ \ }}}{\boxed{\ \ エ\ \ }}$のとき、
最大値$\frac{\boxed{\ \ オ\ \ }\sqrt{\boxed{\ \ カ\ \ }}}{\boxed{\ \ キ\ \ }}\pi^2$をとる。

2022早稲田大学人間科学部過去問
この動画を見る 

大学入試問題#189 早稲田大学(2005) 定積分

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{-1}^{2}\displaystyle \frac{3}{1-x+x^2}\ dx$を計算せよ。

出典:2005年早稲田大学 入試問題
この動画を見る 

大学入試問題#324 宮崎大学(2013) #定積分

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#宮崎大学#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{0}^{1}x^3log(x^2+1)dx$

出典:2013年宮崎大学 入試問題
この動画を見る 
PAGE TOP