式の値 2通りで解説!! - 質問解決D.B.(データベース)

式の値 2通りで解説!!

問題文全文(内容文):
$(60-x)(x-40)=50$
$(60-x)^2+(x-40)^2 =?$
単元: #数Ⅰ#数と式#式の計算(整式・展開・因数分解)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
$(60-x)(x-40)=50$
$(60-x)^2+(x-40)^2 =?$
投稿日:2023.11.05

<関連動画>

福田の1日1題わかった数学〜高校1年生第5回〜絶対値(第1回)

アイキャッチ画像
単元: #数Ⅰ#数と式#一次不等式(不等式・絶対値のある方程式・不等式)#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
数学$\textrm{I}$ 絶対値(第1回)
次の方程式、不等式を解け。
(1)$|x+2|=3$ (2)$|x+2| \lt 3$ (3)$|x+2| \gt 3$
この動画を見る 

京都大 合成関数 不等式

アイキャッチ画像
単元: #数Ⅰ#大学入試過去問(数学)#数と式#一次不等式(不等式・絶対値のある方程式・不等式)#関数と極限#関数(分数関数・無理関数・逆関数と合成関数)#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)#数Ⅲ
指導講師: 鈴木貫太郎
問題文全文(内容文):
$a \geqq 2,f(x)=(x+a)(x+2)$
$f(f(x)) \gt 0$がすべての実数$x$に対して成り立つような$a$の範囲を求めよ

出典:2013年京都大学 過去問
この動画を見る 

【高校数学】  数Ⅰ-70  2次不等式⑨

アイキャッチ画像
単元: #数Ⅰ#2次関数#2次方程式と2次不等式#数学(高校生)
指導講師: とある男が授業をしてみた
問題文全文(内容文):
◎周囲の長さが20cmの長方形の面積を9$cm^2$以上、21$cm^2$以下にするには、短い方の辺の長さをどのような範囲に取ればよいか求めよう。
この動画を見る 

「20+20=200」になる理由を解説

アイキャッチ画像
単元: #数Ⅰ#数A#数Ⅱ#数と式#複素数と方程式#式の計算(整式・展開・因数分解)#整数の性質#約数・倍数・整数の割り算と余り・合同式#複素数#数学(高校生)
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
「20+20=200」になる理由を解説しています。
この動画を見る 

平均値より中央値の話

アイキャッチ画像
単元: #数Ⅰ#データの分析#データの分析#数学(高校生)
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
平均値より中央値の話
この動画を見る 
PAGE TOP