大学入試問題#739「このタイプ、定期的に難関大学で出題されてる」 早稲田大学国際教養学部(2005)三角関数 - 質問解決D.B.(データベース)

大学入試問題#739「このタイプ、定期的に難関大学で出題されてる」 早稲田大学国際教養学部(2005)三角関数

問題文全文(内容文):
$\sin\ x+\sin\ y=\displaystyle \frac{2}{3},\ \cos\ x\ \cos\ y=\displaystyle \frac{1}{2}$のとき、
$\sin\ x\sin\ y,\ \sin\displaystyle \frac{x+y}{2}$の値を求めよ。

出典:2005年早稲田大学国際教養学部 入試問題
チャプター:

00:00 問題紹介
09:15 作成した解答①
09:28 作成した解答②

単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)
指導講師: ますただ
問題文全文(内容文):
$\sin\ x+\sin\ y=\displaystyle \frac{2}{3},\ \cos\ x\ \cos\ y=\displaystyle \frac{1}{2}$のとき、
$\sin\ x\sin\ y,\ \sin\displaystyle \frac{x+y}{2}$の値を求めよ。

出典:2005年早稲田大学国際教養学部 入試問題
投稿日:2024.02.18

<関連動画>

微分の定義!慶應義塾大

アイキャッチ画像
単元: #数Ⅱ#微分法と積分法#平均変化率・極限・導関数#慶應義塾大学#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
2023慶応義塾大学過去問題
$f(x)=x^4$とする
f(x)のx=aにおける微分係数を定義に従って求めなさい
計算過程も記述しなさい
この動画を見る 

福田の1.5倍速演習〜合格する重要問題059〜慶應義塾大学2019年度薬学部第1問(7)〜球に内接する四角錐の体積の最大値

アイキャッチ画像
単元: #数A#数Ⅱ#大学入試過去問(数学)#図形の性質#周角と円に内接する四角形・円と接線・接弦定理#図形と方程式#円と方程式#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$\Large{\boxed{1}}$ (7)正四角錐ABCDEの全ての頂点は半径3の球面上にある。
この正四角錐の体積Vの最大値は$\boxed{\ \ ソ\ \ }$である。

2019慶應義塾大学薬学部過去問
この動画を見る 

福田の1.5倍速演習〜合格する重要問題089〜東京工業大学2018年度理系第2問〜3変数の不定方程式の整数解

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#ユークリッド互除法と不定方程式・N進法#学校別大学入試過去問解説(数学)#東京工業大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{2}$ 次の問いに答えよ。
(1)35x+91y+65z=3 を満たす整数の組(x,y,z)を一組求めよ。
(2)35x+91y+65z=3 を満たす整数の組(x,y,z)の中で$x^2+y^2$の値が最小となるもの、およびその最小値を求めよ。

2018東京工業大学理系過去問
この動画を見る 

式の値 虚数解

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#複素数と方程式#剰余の定理・因数定理・組み立て除法と高次方程式#学校別大学入試過去問解説(数学)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
3次方程式$x^3+1 = 0$の虚数解の1つをαとするとき
$α^{300} + α^{200} + α^{100} + \frac {1}{α^{100}} + \frac {1}{α^{200}} +\frac {1}{α^{300}} = ?$

甲南大学
この動画を見る 

福田の数学〜上智大学2022年TEAP理系型第4問〜媒介変数で表された極方程式

アイキャッチ画像
単元: #大学入試過去問(数学)#平面上の曲線#微分とその応用#積分とその応用#微分法#定積分#学校別大学入試過去問解説(数学)#媒介変数表示と極座標#上智大学#数学(高校生)#数C#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
座標平面において、原点を極とし、x軸の正の部分を始線とする極座標を考え
る。平面上を運動する点Pの極座標$(r,\ θ)$が、時刻$t \geqq 0$の関数として、
$r=1+t,\ \ \ θ=\log(1+t)$
で与えられるとする。時刻$t=0$にPが出発してから初めてy軸上に到着するまで
にPが描く軌跡をCとする。
(1)$\ t \gt 0$において、Pが初めてy軸上に到着するときのtの値を求めよ。
(2)C上の点のx座標の最大値を求めよ。
(3)Cの長さを求めよ。
(4)Cを座標平面上に図示せよ。
(5)Cとx軸とy軸で囲まれた部分の面積を求めよ。

2022上智大学理系過去問
この動画を見る 
PAGE TOP