【未知なるものは…!】文章題:明治学院高等学校~全国入試問題解法 - 質問解決D.B.(データベース)

【未知なるものは…!】文章題:明治学院高等学校~全国入試問題解法

問題文全文(内容文):
所持金で$ \color{red}{プリンを8個}$買うと$ \color{red}{220円}$余り,$ \color{red}{10個}$買うと合計金額から$ \color{blue}{1割引き}$になるので$ \color{red}{60円}$余る.

このときの$ \color{red}{所持金}$はいくらか?

明治学院高校過去問
単元: #数学(中学生)#中2数学#連立方程式#高校入試過去問(数学)#明治学院高等学校
指導講師: 高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
所持金で$ \color{red}{プリンを8個}$買うと$ \color{red}{220円}$余り,$ \color{red}{10個}$買うと合計金額から$ \color{blue}{1割引き}$になるので$ \color{red}{60円}$余る.

このときの$ \color{red}{所持金}$はいくらか?

明治学院高校過去問
投稿日:2023.09.18

<関連動画>

三平方の定理を使わずに解くこともできます

アイキャッチ画像
単元: #数学(中学生)#中2数学#中3数学#三平方の定理#三角形と四角形
指導講師: 数学を数楽に
問題文全文(内容文):
x=?
*図は動画内参照
この動画を見る 

高等学校入学試験予想問題:三重県公立高等学校~全部入試問題

アイキャッチ画像
単元: #数学(中学生)#中2数学#中3数学#式の計算(単項式・多項式・式の四則計算)#1次関数#2次関数#円
指導講師: 高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
$ \boxed{1}$
(1)$ -1+4\div \dfrac{2}{3}$
(2)$ 3(2a+5b)-(a+2b)$
(3)$ (x-2)(x+2)+(x-1)(x+4)$
(4)$ x^2+5x+3=0 $

$ \boxed{2}$
(1)点Pの座標は?
(2)y軸上に点Q,Qのy座標をt($ t \gt 4 $)とする.
Qを通り,x軸に平行な直線とb,mの交点をR,Sとする.
①t=6のとき,$ \triangle PRS $は?
②$ \triangle PRS $の面積が$ \triangle ABP $の5倍であるとき,tは?

$ \boxed{3}$
円周上にA,B,C,D,Eがある.
$AC=AE$,$\stackrel{\huge\frown}{BC}$=$\stackrel{\huge\frown}{DE}$であり,交点$ F,G$である.
(1)$ \triangle ABC \equiv \triangle AGE $を証明せよ.
(2)$ AB=4 $cm,$ AE=6$cm,$ DG=3 $cmのとき,
①$ AF=? $
②$ \triangle ABG $と$ \triangle CEF $の面積比を求めよ.
この動画を見る 

【数学はパズルだ!】連立方程式:愛知県高校入試~全国入試問題解法

アイキャッチ画像
単元: #数学(中学生)#中2数学#連立方程式
指導講師: 高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
入試問題 愛知県の高校

図の○の中に入る数
各辺の3つの和がすべて等しくなる。
ア、イにあてはまる数を求めなさい。
この動画を見る 

連立方程式にも上手い解き方はある15秒~全国入試問題解法 #shorts #数学 #入試対策 #math #動体視力

アイキャッチ画像
単元: #数学(中学生)#中2数学#連立方程式
指導講師: 高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
連立方程式にも上手い解き方はある15秒~全国入試問題解法 #shorts #数学 #入試対策 #math #動体視力
この動画を見る 

高等学校入学試験問題予想:法政大学第二高等学校~全部入試問題

アイキャッチ画像
単元: #数学(中学生)#中2数学#中3数学#式の計算(展開、因数分解)#2次方程式#確率#高校入試過去問(数学)
指導講師: 高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
$\boxed{1}$
因数分解せよ.

(1)$(x-2y)^2+(x+y)(x-5y)+y^2$
(2)$a=\dfrac{1}{\sqrt5+1},b=\dfrac{1}{\sqrt5-1}$のとき,$(a-4b)(b-4a)=?$

$\boxed{2}$
1~5までの数字が書かれたカードが2枚ずつ合計10枚ある.

(1)これらのカードを袋に入れてその中から同時に2枚取り出すとき,カードの数字の積が偶数となる確率は?
(2)$n$の3以上の自然数$\dfrac{4}{\sqrt n-\sqrt2}$の整数部分が2であるとき,
$n$として考えられる値を全て求めよ.

$\boxed{3}$
$PQ$と$D$の交点を$R$とする.
点$P,Q$の$x$座標を$p,q$とする.
直線$PQ$の傾きが,$C,D$の比例定数$a$と等しく,$R$が線分$PQ$の中点となる.
(1)点$A$の座標を$a$で表せ.
(2)$p+q=?$
(3)点$R$の座標を$a$で表せ.
(4)$p.q$の値

法政第二高校過去問
この動画を見る 
PAGE TOP