指数・対数 × 整数問題!落としたくない問題です【大阪大学】【数学 入試問題】 - 質問解決D.B.(データベース)

指数・対数 × 整数問題!落としたくない問題です【大阪大学】【数学 入試問題】

問題文全文(内容文):
連立方程式$\begin{eqnarray}
\left\{
\begin{array}{l}
2^x+3^y=43 \\
\log_{ 2 } x-\log_{ 3 } y=1
\end{array}
\right.
\end{eqnarray}$を考える。

(1)この連立方程式を満たす自然数$x,y$の組を求めよ。
(2)この連立方程式を満たす正の実数$x,y$は、(1)で求めた自然数の組以外に存在しないことを示せ。

大阪大過去問
単元: #数Ⅱ#大学入試過去問(数学)#指数関数と対数関数#学校別大学入試過去問解説(数学)#大阪大学#数学(高校生)
指導講師: 数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
連立方程式$\begin{eqnarray}
\left\{
\begin{array}{l}
2^x+3^y=43 \\
\log_{ 2 } x-\log_{ 3 } y=1
\end{array}
\right.
\end{eqnarray}$を考える。

(1)この連立方程式を満たす自然数$x,y$の組を求めよ。
(2)この連立方程式を満たす正の実数$x,y$は、(1)で求めた自然数の組以外に存在しないことを示せ。

大阪大過去問
投稿日:2023.02.08

<関連動画>

福田の一夜漬け数学〜折れ線の最小(4)〜受験編、一橋大学の問題に挑戦!

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#三角関数#学校別大学入試過去問解説(数学)#一橋大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{1}}$ 点$O$を中心とする半径$r$の円周上に、2点$A,B$を$\angle AOB \lt \displaystyle \frac{\pi}{2}$となる
ようにとり、$\theta=\angle AOB$とおく。線分$AB$上に点$D$をとる。また、
点$P$は線分$OA$上を、点$Q$は線分$OB$上を動く。
(1)$a=OD$とおく。$DP+PQ+QD$の最小値を$a$と$\theta$で表せ。
(2)さらに点$D$が線分$AB$上を動くときの
$DP+PQ+QD$の最小値を$r$と$\theta$で表せ。

一橋大学過去問
この動画を見る 

東工大 三次方程式

アイキャッチ画像
単元: #数Ⅱ#複素数と方程式#剰余の定理・因数定理・組み立て除法と高次方程式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$k \gt 0$である.
$x^3-x+k=0$は絶対値が1の虚数解をもつ.3つの解を求めよ.

1972東工大過去問
この動画を見る 

横浜市立(医)tanの半角

アイキャッチ画像
単元: #数Ⅱ#三角関数#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$\dfrac{1}{\tan\dfrac{\pi}{24}}$の値を求めよ.

2019横浜市立(医)過去問
この動画を見る 

#上智大学(2016) #ウォリス積分 #定積分 #Shorts

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#積分とその応用#定積分#学校別大学入試過去問解説(数学)#不定積分・定積分#上智大学#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{0}^{\frac{\pi}{2}} (\sin^3x+\cos^3x) dx$

出典:2016年上智大学
この動画を見る 

三角関数 数 三角関数の不等式2【NI・SHI・NOがていねいに解説】

単元: #数Ⅱ#三角関数#三角関数とグラフ#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
$0\leqq θ\lt 2π$のとき,次の不等式を解け。
(1) $\sin (θ+\displaystyle \frac{π}{4})\leqq \displaystyle \frac{\sqrt{3}}{2}$

(2) $\tan (θ-\displaystyle \frac{π}{6})\gt 1$

(3) $\cos (θ-\displaystyle \frac{π}{3})\lt -\displaystyle \frac{\sqrt{3}}{2}$

(4) $\tan (θ+\displaystyle \frac{π}{6})\geqq -\sqrt{3}$
この動画を見る 
PAGE TOP