大学入試問題#365「さすがに小問」 旭川医科大学(2014) #定積分 - 質問解決D.B.(データベース)

大学入試問題#365「さすがに小問」 旭川医科大学(2014) #定積分

問題文全文(内容文):
$\displaystyle \int_{0}^{1}log(x^2+1)dx$

出典:2014年旭川医科大学 入試問題
単元: #大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#旭川医科大学#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{0}^{1}log(x^2+1)dx$

出典:2014年旭川医科大学 入試問題
投稿日:2022.11.12

<関連動画>

#会津大学(2009) #定積分 #Shorts

アイキャッチ画像
単元: #数Ⅱ#微分法と積分法#積分とその応用#定積分#不定積分・定積分#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{1}^{2} (3x^3-1)log\ x\ dx$

出典:2009年会津大学
この動画を見る 

【高校数学】毎日積分50日目 実践編①回転体シリーズ~必要な平面を図示~【難易度:★★★】【毎日17時投稿】

アイキャッチ画像
単元: #積分とその応用#定積分#数学(高校生)#数Ⅲ
指導講師: 理数個別チャンネル
問題文全文(内容文):
$xyz$空間内で4点(0,0,0),(1,0,0),(1,1,0),(0,1,0)を頂点とする正方形の周および内部をKとし、Kをx軸のまわりに1回転させてできる立体をKx,Kをy軸のまわりに1回転させてできる立体をKyとする。さらに、KxとKyの共通部分をLとし、KxとKyの少なくともどちらか一方に含まれる点全体からなる立体をMとする。このとき、以下の問いに答えよ。
(1) Kxの体積を求めよ。
(2)平面$z=t$がKxと共有点をもつような実数tの値の範囲を答えよ。またこのとき、Kxを平面$z=t$で切った断面積A(t)を求めよ。
(3)平面$z=t$がLと共有点をもつような実数tの値の範囲を答えよ。また、このとき、Lを平面$z=t$で切った断面積B(t)を求めよ。
(4) Lの体積を求めよ。
(5) Mの体積を求めよ。
この動画を見る 

大学入試問題#195 兵庫医科大学 定積分

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#数学(高校生)#数Ⅲ#兵庫医科大学
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{-1}^{0}\displaystyle \frac{x^5}{(x^3-1)}\ dx$を計算せよ。

出典:兵庫医科大学 入試問題
この動画を見る 

大学入試問題#499「見た目以上に計算量が多い」 信州大学後期(2015) #広義積分

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#数学(高校生)#信州大学#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \lim_{ s \to +0 } \displaystyle \int_{s}^{\frac{\pi}{2}} (\displaystyle \frac{1}{\sin\ x}-\displaystyle \frac{1}{x}) dx$

出典:2015年信州大学後期 入試問題
この動画を見る 

大学入試問題#95 横浜市立大学医学部(2013) 定積分

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#数学(高校生)#数Ⅲ#横浜市立大学
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{0}^{\frac{\pi}{2}}\displaystyle \frac{\sqrt{ 2 }}{\sin\ x+\cos\ x}\ dx$を求めよ。

出典:2013年横浜市立大学医学部 入試問題
この動画を見る 
PAGE TOP