【中学からの!】三角比の計算(3):特別講義(トッコー)~全国入試問題解法 - 質問解決D.B.(データベース)

【中学からの!】三角比の計算(3):特別講義(トッコー)~全国入試問題解法

問題文全文(内容文):
$ \sin\theta +\sqrt3 \cos \theta=1$のとき,$\sin\theta$の値を求めよ.
ただし,$\theta$は第2象限の角である.

単元: #数学(中学生)#図形と計量#三角比(三角比・拡張・相互関係・単位円)#三角比への応用(正弦・余弦・面積)
指導講師: 高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
$ \sin\theta +\sqrt3 \cos \theta=1$のとき,$\sin\theta$の値を求めよ.
ただし,$\theta$は第2象限の角である.

投稿日:2022.07.26

<関連動画>

福田の数学〜京都大学2023年文系第3問〜半径1の円に内接する正五角形の一辺の長さの計量

アイキャッチ画像
単元: #数Ⅰ#数A#大学入試過去問(数学)#図形の性質#図形と計量#三角比(三角比・拡張・相互関係・単位円)#三角比への応用(正弦・余弦・面積)#周角と円に内接する四角形・円と接線・接弦定理#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{3}$(1)$\cos 2\theta$と$\cos 3\theta$を$\cos\theta$の式として表せ。
(2)半径1の円に内接する正五角形の一辺の長さが1.15より大きいな否かを理由をつけて判定せよ。

2023京都大学文系過去問
この動画を見る 

気付けば一瞬!!tanθ=❓

アイキャッチ画像
単元: #数Ⅰ#図形と計量#三角比(三角比・拡張・相互関係・単位円)#三角比への応用(正弦・余弦・面積)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
tanθ=?
*図は動画内参照
この動画を見る 

【数学Ⅰ/三角比】円に内接する四角形①

アイキャッチ画像
単元: #数Ⅰ#図形と計量#三角比への応用(正弦・余弦・面積)#数学(高校生)
指導講師: 【ゼロから理解できる】高校数学・物理
問題文全文(内容文):
円$O$に内接する四角形$ABCD$がある。
$AB=3,$ $BC=CD=\sqrt{ 3 },$ $\cos\angle ABC=\displaystyle \frac{\sqrt{ 3 }}{6}$のとき、次のものを求めよ。
(1)対角線$AC$の長さ
(2)辺$AD$の長さ
(3)円$O$の半径
この動画を見る 

福田の数学〜一橋大学2022年文系第2問〜平面上の三角形の面積の最大値

アイキャッチ画像
単元: #数Ⅰ#数Ⅱ#大学入試過去問(数学)#図形と計量#三角比への応用(正弦・余弦・面積)#三角関数#加法定理とその応用#学校別大学入試過去問解説(数学)#一橋大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{2}}\ 0 \leqq \theta \lt 2\piとする。座標平面上の3点O(0,0), P(\cos\theta,\sin\theta), Q(1,3\sin2\theta)\\
が三角形をなすとき、\triangle OPQの面積の最大値を求めよ。
\end{eqnarray}

2022一橋大学文系過去問
この動画を見る 

高校数学:数Ⅰ:図形と計量:三角比への応用:「三角形の形状」の考え方!

アイキャッチ画像
単元: #数Ⅰ#図形と計量#三角比への応用(正弦・余弦・面積)
指導講師: 理数個別チャンネル
問題文全文(内容文):
$△ABC$において,$\sin A=\cos B\sin C$が成り立つとき,この三角形はどのような形をしているか。
$△ABC$において,次の等式が成り立つとき,この三角形はどのような形をしているか。
(1) $a\sin A=b\sin B$
(2) $\sin A=2\cos B\sin C$
(3) $a\cos A=b\cos B$
この動画を見る 
PAGE TOP