【考え込むより、まず手を付けよう!】平方根:桐蔭学園高等学校~全国入試問題解法 - 質問解決D.B.(データベース)

【考え込むより、まず手を付けよう!】平方根:桐蔭学園高等学校~全国入試問題解法

問題文全文(内容文):
次の$\Box$に最も適する数字を答えよ.
${(\sqrt3+\sqrt2)^2-(\sqrt3-\sqrt2)^2}^2=\Box$である.

桐蔭学園高等学校
単元: #数学(中学生)#中3数学#平方根#高校入試過去問(数学)
指導講師: 高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
次の$\Box$に最も適する数字を答えよ.
${(\sqrt3+\sqrt2)^2-(\sqrt3-\sqrt2)^2}^2=\Box$である.

桐蔭学園高等学校
投稿日:2022.10.26

<関連動画>

ルート含む数の大小関係  青山学院

アイキャッチ画像
単元: #数学(中学生)#中3数学#平方根#高校入試過去問(数学)
指導講師: 数学を数楽に
問題文全文(内容文):
次の数を小さい順に並べ記号で答えよ
ア. $\frac{7}{6}$
イ. $\frac{\sqrt {10}}{3}$
ウ. $\sqrt{\frac{7}{6}}$
エ. $\frac{\sqrt5}{2}$

青山学院大学高等部
この動画を見る 

区別できる?

アイキャッチ画像
単元: #数学(中学生)#中3数学#平方根
指導講師: 数学を数楽に
問題文全文(内容文):
$(\sqrt 3)^2=$
$\sqrt {3^2}=$
$(\sqrt {-3})^2=$
$\sqrt {(-3)^2}=$
この動画を見る 

【高校受験対策】数学-死守22

アイキャッチ画像
単元: #数学(中学生)#中2数学#中3数学#式の計算(単項式・多項式・式の四則計算)#連立方程式#式の計算(展開、因数分解)#平方根#2次方程式#確率#立体図形#立体切断#立体図形その他
指導講師: とある男が授業をしてみた
問題文全文(内容文):
①$1-(-3)$を計算しなさい.

②$2a+\dfrac{a}{3}$を計算しなさい.

③$4(2x - y) - 3(x + y) $を計算しなさい.

④$(3x+1)^2$展開しなさい.

⑤$4a^2-12ab$を因数分解しなさい.

⑥連立方程式$\begin{eqnarray}
\left\{
\begin{array}{l}
2x+y=4 \\
4x-3y=18
\end{array}
\right.
\end{eqnarray}$を解きなさい.

⑦七角形の内角の和を求めなさい.

⑧2次方程式$x ^ 2 + x - 12 = 0$を解きなさい.

⑨$\sqrt2 \lt x \lt \sqrt{19}$を満たす$x$を,小さい順にすべて書きなさい.

⑩右の図は,立体図の展開図である.
この展開図を組み立てて立方体をつくるとき,
面アと垂直になる面を,面イ~カからすべて選び,記号で答えなさい.

⑪$1,2,3,4,5$の数字を1つずつ記入した5枚のカードがある.
このカードをよくきってから1枚ずつ2回続けて引き,
引いた順に左から並べて2けたの整数をつくる.
このとき,できた2けたの整数が4の倍数である確率を求めなさい.

図は動画内参照
この動画を見る 

【数学】平方数の語呂合わせ~11から29まで覚えよう~

アイキャッチ画像
単元: #数学(中学生)#中3数学#平方根
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
平方数の語呂合わせ~11から29まで覚えよう~
この動画を見る 

【高校受験対策/数学】死守71

アイキャッチ画像
単元: #数学(中学生)#中2数学#中3数学#正の数・負の数#式の計算(単項式・多項式・式の四則計算)#平方根#比例・反比例#文字と式#平面図形
指導講師: とある男が授業をしてみた
問題文全文(内容文):
高校受験対策・死守71

①$8÷4+6$を計算せよ。

②$\frac{1}{2}+\frac{9}{10}×\frac{5}{3}$を計算せよ。

④$y$は$x$に反比例し、$x=2$のとき$y=-3$である。
このとき、$y$を$x$の式で表せ。

⑤次の比例式で、$x$の値を求めよ。
$x:(4x-1)=1:x$

⑥$\sqrt{7}$より大きく$\sqrt{31}$より小さい整数をすべて書け。

⑦3つの数$a$、$b$、$c$について、$ab \lt 0$、$abc \gt 0$のとき、$a$、$b$、$c$の符号の組み合わせとして、
最も適当なものを下のア~エの中から1つ選び、記号で答えよ。
※図は動画参照

⑧次のように、1から6までの数字がくり返し並んでいる。
左から100番目の数字は何か。
1、2、3、4、5、6、1、2、3、4、5、6、1、2・・・

⑨右の図のように、$AB=AC$である。
二等辺三角形$ABC$と、頂点$A$、$C$をそれぞれ通る2本の平行な直線$l$、$m$がある。
このときの$\angle x$大きさは何度か。

この動画を見る 
PAGE TOP