福田の1.5倍速演習〜合格する重要問題060〜早稲田大学2019年度教育学部第3問〜区分求積と極限 - 質問解決D.B.(データベース)

福田の1.5倍速演習〜合格する重要問題060〜早稲田大学2019年度教育学部第3問〜区分求積と極限

問題文全文(内容文):
$\Large{\boxed{3}}$ (1)m,nを自然数とし、$n \geqq 2$とする。このとき、
$\log\left(1+\displaystyle\frac{n}{m}\right) \lt \displaystyle\sum_{k=m}^{m+n-1}\displaystyle\frac{1}{k} \lt \log\left(1+\displaystyle\frac{n}{m}\right)+\displaystyle\frac{n}{m(m+n)}$
を証明せよ。ただし、$\displaystyle\sum_{k=m}^{m+n-1}\displaystyle\frac{1}{k}=\displaystyle\frac{1}{m}+\displaystyle\frac{1}{m+1}+\cdots+\displaystyle\frac{1}{m+n-1}$とする。
(2)2以上の自然数$n$に対して
$a_n=\displaystyle\sum_{k=1}^n\frac{1}{(2n+k)(n+1-k)}$
$b_n=\displaystyle\frac{\log n}{n}$
とおく。$\displaystyle\lim_{n \to \infty}\frac{a_n}{b_n}$を求めよ。

2019早稲田大学教育学部過去問
単元: #大学入試過去問(数学)#関数と極限#積分とその応用#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
$\Large{\boxed{3}}$ (1)m,nを自然数とし、$n \geqq 2$とする。このとき、
$\log\left(1+\displaystyle\frac{n}{m}\right) \lt \displaystyle\sum_{k=m}^{m+n-1}\displaystyle\frac{1}{k} \lt \log\left(1+\displaystyle\frac{n}{m}\right)+\displaystyle\frac{n}{m(m+n)}$
を証明せよ。ただし、$\displaystyle\sum_{k=m}^{m+n-1}\displaystyle\frac{1}{k}=\displaystyle\frac{1}{m}+\displaystyle\frac{1}{m+1}+\cdots+\displaystyle\frac{1}{m+n-1}$とする。
(2)2以上の自然数$n$に対して
$a_n=\displaystyle\sum_{k=1}^n\frac{1}{(2n+k)(n+1-k)}$
$b_n=\displaystyle\frac{\log n}{n}$
とおく。$\displaystyle\lim_{n \to \infty}\frac{a_n}{b_n}$を求めよ。

2019早稲田大学教育学部過去問
投稿日:2023.01.14

<関連動画>

福田のわかった数学〜高校3年生理系041〜極限(41)有名な極限の証明(1)

アイキャッチ画像
単元: #数Ⅱ#式と証明#恒等式・等式・不等式の証明#関数と極限#関数の極限#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
数学$\textrm{III}$ 有名な極限を証明(1)
(1)$x \gt 0$で$e^x \gt 1+x+\dfrac{x^2}{2}$ を示せ。
(2)$\displaystyle \lim_{x \to \infty}xe^{-x}$ を求めよ。
この動画を見る 

福田のわかった数学〜高校3年生理系090〜グラフを描こう(12)無理関数、凹凸、漸近線

アイキャッチ画像
単元: #関数と極限#微分とその応用#関数(分数関数・無理関数・逆関数と合成関数)#関数の変化(グラフ・最大最小・方程式・不等式)#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
数学$\textrm{III}$ グラフを描こう。(12)
$y=\sqrt[3]{x^3-x^2}$ のグラフを描け。ただし凹凸、漸近線も調べよ。
この動画を見る 

【数Ⅲ】極限:三角関数と極限(sinx/x=1の利用1)

アイキャッチ画像
単元: #関数と極限#関数の極限#数学(高校生)#数Ⅲ
指導講師: 理数個別チャンネル
問題文全文(内容文):
次の極限値を求めよう。
$\displaystyle \lim_{x\to\infty}x\sin・\dfrac{1}{x}$
この動画を見る 

福田の数学〜無限級数の和は部分和の極限〜明治大学2023年全学部統一Ⅲ第1問(1)〜無限級数の和

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#数列とその和(等差・等比・階差・Σ)#関数と極限#数列の極限#学校別大学入試過去問解説(数学)#明治大学#数学(高校生)#数B#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
無限級数

$\displaystyle \sum_{n=1}^{\infty} \log \frac{(n+1)(n+2)}{n(n+3)}$

の和を求めよ。

2023明治大学過去問
この動画を見る 

大学入試問題#465「よくある極限問題」 電気通信大学2009 #極限

アイキャッチ画像
単元: #大学入試過去問(数学)#三角関数#数列の極限#関数の極限#学校別大学入試過去問解説(数学)#数学(高校生)#数Ⅲ#電気通信大学
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \lim_{ x \to 0 } \displaystyle \frac{\sin2x-2\sin\ x}{x\ \sin^2\ x}$

出典:2009年電気通信大学 入試問題
この動画を見る 
PAGE TOP