福田の数学〜過去の入試問題(期間限定)〜東京慈恵会医科大学医学部2020第4問〜正四面体の切り口の面積の最小値 - 質問解決D.B.(データベース)

福田の数学〜過去の入試問題(期間限定)〜東京慈恵会医科大学医学部2020第4問〜正四面体の切り口の面積の最小値

問題文全文(内容文):
oを原点とするxyz 空間内に、xy平面上の放物線y=x²をy軸のまわりに回転してできる曲面Sと、正四面体OABCがあり、条件「3頂点A, B, CはS上にある」をみたしている。このとき、次の問いに答えよ。
(1)正四面体 OABCの1辺の長さを求めよ。
(2)正四面体 OABCが条件をみたしながら動くとき、xy平面による正四面体OABCの切り口の面積の最小値を求めよ。
単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#数学(高校生)#東京慈恵会医科大学#東京慈恵会医科大学
指導講師: 福田次郎
問題文全文(内容文):
oを原点とするxyz 空間内に、xy平面上の放物線y=x²をy軸のまわりに回転してできる曲面Sと、正四面体OABCがあり、条件「3頂点A, B, CはS上にある」をみたしている。このとき、次の問いに答えよ。
(1)正四面体 OABCの1辺の長さを求めよ。
(2)正四面体 OABCが条件をみたしながら動くとき、xy平面による正四面体OABCの切り口の面積の最小値を求めよ。
投稿日:2025.01.21

<関連動画>

千葉大 整式

アイキャッチ画像
単元: #大学入試過去問(数学)#複素数平面#複素数平面#学校別大学入試過去問解説(数学)#千葉大学#数学(高校生)#数C
指導講師: 鈴木貫太郎
問題文全文(内容文):
a,b,c,dは自然数
ab,cd
自然数p,qが存在することを示せ

出典:2004年千葉大学 過去問
この動画を見る 

【東北大学】合格勉強法!傾向と対策、おすすめ教材と勉強法。

アイキャッチ画像
単元: #その他#東北大学#勉強法
指導講師: 篠原好【京大模試全国一位の勉強法】
問題文全文(内容文):
東北大学合格勉強法!傾向と対策、おすすめ教材と勉強法
この動画を見る 

福田の数学〜早稲田大学2021年商学部第1問(3)〜相加相乗平均

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#式と証明#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
1 
(3)正の実数x,y,z
1x+2y+3z=1
を満たすとき、(x1)(y2)(z3)の最小値は    である。

2021早稲田大学商学部過去問
この動画を見る 

福田の数学〜よくある図形問題ですが微分で困ったことに〜明治大学2023年理工学部第3問〜三角比と最大

アイキャッチ画像
単元: #数Ⅰ#大学入試過去問(数学)#図形と計量#三角比(三角比・拡張・相互関係・単位円)#学校別大学入試過去問解説(数学)#明治大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
[ 3 ]長さ 2 の線分 AB を直径とする円 O の周上に、点 P をcosPBA=33となるようにとる。このとき、 BP =である。線分 AB 上に A, B とは異なる点 Q をとり、x=AQ(0x2)とする。 PQ をxの式で表すと PQ =となる。また、三角形 BPQ の面積 s をxの式で表すと s =である。直線 PQ と円 O の交点のうち、 P でないものを R とする。三角形 AQR の面積Tをxの式で表すとT=である。また、0x2の範囲でxを動かすとき、Tが最大になるのはx=のときだけである。

2023明治大学理工学部過去問
この動画を見る 

福田の数学〜ベクトルの3項間漸化式だって?〜慶應義塾大学2023年商学部第3問〜ベクトルと漸化式

アイキャッチ画像
単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
平面上に3点O,P1,P2が、|OP1|=6,|OP2|=305,OP1OP2となるように与えられている。また、点Oから直線P1P2との交点をHとする。さらに平面上に点P3,P4,P5,・・・を、n=1,2,3,・・・に対し、点Pn+2が点PntとPn+1を結ぶ線分PnPn+1を4:1に内分するように定める。
(1)OP1OP2を使って、OHを表すとOH=(ア)である。
(2)P1P2を使って、HPnをnを用いた式で表すとHPn=(イ)である。
(3)ベクトルを使わずに、|OPn|2をnを用いた式で表すと|OPn|2である。

2023慶應義塾大学商学部過去問
この動画を見る 
PAGE TOP preload imagepreload image