福田の数学〜過去の入試問題(期間限定)〜東京慈恵会医科大学医学部2020第4問〜正四面体の切り口の面積の最小値 - 質問解決D.B.(データベース)

福田の数学〜過去の入試問題(期間限定)〜東京慈恵会医科大学医学部2020第4問〜正四面体の切り口の面積の最小値

問題文全文(内容文):
oを原点とするxyz 空間内に、xy平面上の放物線y=x²をy軸のまわりに回転してできる曲面Sと、正四面体OABCがあり、条件「3頂点A, B, CはS上にある」をみたしている。このとき、次の問いに答えよ。
(1)正四面体 OABCの1辺の長さを求めよ。
(2)正四面体 OABCが条件をみたしながら動くとき、xy平面による正四面体OABCの切り口の面積の最小値を求めよ。
単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#数学(高校生)#東京慈恵会医科大学#東京慈恵会医科大学
指導講師: 福田次郎
問題文全文(内容文):
oを原点とするxyz 空間内に、xy平面上の放物線y=x²をy軸のまわりに回転してできる曲面Sと、正四面体OABCがあり、条件「3頂点A, B, CはS上にある」をみたしている。このとき、次の問いに答えよ。
(1)正四面体 OABCの1辺の長さを求めよ。
(2)正四面体 OABCが条件をみたしながら動くとき、xy平面による正四面体OABCの切り口の面積の最小値を求めよ。
投稿日:2025.01.21

<関連動画>

福田の数学〜東京科学大学(旧・東京工業大学)2025理系第3問〜確率漸化式と無限級数の和

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#確率#数列#漸化式#学校別大学入試過去問解説(数学)#東京工業大学#数学(高校生)#数B
指導講師: 福田次郎
問題文全文(内容文):
$\boxed{3}$

$0\lt p\lt 1$とする。

表が出る確率が$p$、裏が出る確率が$1-p$である

$1$枚のコインを使って次のゲームを行う。

・ゲームの開始時点で点数は$0$点

・コインを投げ続け、表が出るごとに$1$点加算し、
 裏が出たときは点数はそのまま

・$2$回続けて裏が出たらゲームは終了。

$0$以上の整数$n$に対し、ゲームが終わったときに

$n$点となっている確率を$Q_n$とする。

(1)$Q_1,Q_2$を$p$を用いて表せ。

(2)$Q_2$を$n$と$p$を用いて表せ。

(3)$0\lt x\lt 1$を満たす実数$x$に対して次式が

成り立つことを示せ。

$\dfrac{1}{(1-x)^2}=\displaystyle \sum_{k=0}^{\infty}(n+1)x^n$

必要ならば$0\lt x \lt 1$のとき

$\displaystyle \lim_{n\to\infty} nx^n=0$であることを

証明なしで使ってもよい。

(4)無限級数$\displaystyle \sum_{n=0}^{\infty} nQn$を$p$を用いて表せ。

$2025$年東京科学大学(旧・東京工業大学)
理系過去問題
この動画を見る 

福田の1.5倍速演習〜合格する重要問題061〜早稲田大学2019年度社会科学部第1問〜円の通過範囲と放物線と円の位置関係

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#図形と方程式#円と方程式#軌跡と領域#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)#大学入試解答速報#数学
指導講師: 福田次郎
問題文全文(内容文):
$\Large{\boxed{1}}$ $k$を実数とする。座標平面において方程式
$x^2+y^2+x+(2k+1)y+k^2+1=0$
の表す図形$C$を考える。次の問いに答えよ。
(1)$C$が円であるような$k$の値の範囲を求めよ。ただし、点も円とみなすものとする。
(2)$k$が変化するとき、$C$が通る点($x,y$)の存在領域を座標平面上に図示せよ。
(3)(2)で求めた領域の境界線と(1)で求めた円が共有点をもたないような、$k$の値の
範囲を求めよ。

2019早稲田大学社会科学部過去問
この動画を見る 

福田の数学〜中央大学2022年経済学部第1問(6)〜放物線と直線で囲まれた面積

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#学校別大学入試過去問解説(数学)#面積、体積#中央大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
(6)放物線$y=x^2-4x+3$と直線$y=2x-2$で囲まれた図形の面積を求めよ。

2022中央大学経済学部過去問
この動画を見る 

大学入試問題#464「誘導の力は偉大」 神戸大学(2000) #不定積分 #積分の応用

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#不定積分#学校別大学入試過去問解説(数学)#神戸大学#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$f(x)=\displaystyle \frac{1}{x^3(1-x)}$
(1)
$f(x)=\displaystyle \frac{a_1}{x}+\displaystyle \frac{a_2}{x^2}+\displaystyle \frac{a_3}{x^3}+\displaystyle \frac{b}{1-x}$
とおくとき、定数$a_1,a_2,a_3,b$を求めよ

(2)
$\displaystyle \int f(x) dx$

(3)
$\displaystyle \int \displaystyle \frac{dx}{x^P(1-x)}(P=1,2,3,・・・)$

出典:2000年神戸大学 入試問題
この動画を見る 

福田の数学〜東京医科歯科大学2023年医学部第3問〜積分で定義された関数と極限

アイキャッチ画像
単元: #大学入試過去問(数学)#関数と極限#微分とその応用#積分とその応用#関数の極限#定積分#学校別大学入試過去問解説(数学)#数学(高校生)#数Ⅲ#東京医科歯科大学
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{3}$ $a$,$b$を正の実数、$p$を$a$より小さい正の実数とし、すべての実数$x$について
$\displaystyle\int_p^{f(x)}\frac{a}{u(a-u)}du$=$bx$, 0<$f(x)$<$a$
かつ$f(0)$=$p$を満たす関数$f(x)$を考える。このとき以下の問いに答えよ。
(1)$f(x)$を$a$,$b$,$p$を用いて表せ。
(2)$f(-1)$=$\frac{1}{2}$, $f(1)$=1, $f(3)$=$\frac{3}{2}$のとき、$a$,$b$,$p$を求めよ。
(3)(2)のとき、$\displaystyle\lim_{x \to -\infty}f(x)$, $\displaystyle\lim_{x \to \infty}f(x)$ を求めよ。
この動画を見る 
PAGE TOP