問題文全文(内容文):
${\Large\boxed{1}}$
(3)正の実数$x,y,z$が
$\dfrac{1}{x}+\dfrac{2}{y}+\dfrac{3}{z}=1$
を満たすとき、$(x-1)(y-2)(z-3)$の最小値は$\boxed{\ \ ウ\ \ }$である。
2021早稲田大学商学部過去問
${\Large\boxed{1}}$
(3)正の実数$x,y,z$が
$\dfrac{1}{x}+\dfrac{2}{y}+\dfrac{3}{z}=1$
を満たすとき、$(x-1)(y-2)(z-3)$の最小値は$\boxed{\ \ ウ\ \ }$である。
2021早稲田大学商学部過去問
単元:
#数Ⅱ#大学入試過去問(数学)#式と証明#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
${\Large\boxed{1}}$
(3)正の実数$x,y,z$が
$\dfrac{1}{x}+\dfrac{2}{y}+\dfrac{3}{z}=1$
を満たすとき、$(x-1)(y-2)(z-3)$の最小値は$\boxed{\ \ ウ\ \ }$である。
2021早稲田大学商学部過去問
${\Large\boxed{1}}$
(3)正の実数$x,y,z$が
$\dfrac{1}{x}+\dfrac{2}{y}+\dfrac{3}{z}=1$
を満たすとき、$(x-1)(y-2)(z-3)$の最小値は$\boxed{\ \ ウ\ \ }$である。
2021早稲田大学商学部過去問
投稿日:2021.06.10