問題文全文(内容文):
第一問
[1]方程式$9x^2-6x-1=0$の二つの実数解をα,β(α<β)とすると
$α=\displaystyle \frac{ア-\sqrt{イ}}{ウ}$,$β=\displaystyle \frac{ア+\sqrt{イ}}{ウ}$
である。
(1)$n\lt\displaystyle \frac{1}{β}\lt n+1$を満たす整数nは エ である
(2)xについての連立不等式
$\left\{
\begin{array}{l}
αx \lt 1\\
βx \lt 1
\end{array}
\right.$
を考える。
αの符号に注意すると、不等式①の解は オ と表される。
よって連立不等式①かつ②の解は カ と表される。
オ の解答群
⓪ $x\lt\displaystyle \frac{1}{α}$ ① $\displaystyle \frac{1}{α}\lt x$
カ の解答群
⓪ $x\lt\displaystyle \frac{1}{α}$ ① $\displaystyle \frac{1}{α}\lt x\lt\displaystyle \frac{1}{β}$ ② $\displaystyle \frac{1}{β}\lt x$
(3)-9以上9以下の整数のうち、(2)の連立不等式①かつ②の解の範囲に含まれるものの個数は キ 個である。
[2]△ABCにおいて、$AB=7$,$BC=3\sqrt{2}$,$CA=5$とする。このとき
$cos ∠BAC=\displaystyle \frac{ク}{ケ}$,$sin ∠BAC=\displaystyle \frac{コ}{サ}$
である。
△ABCの外接円の中心Oとすると、円Oの半径は$\displaystyle \frac{シ\sqrt{ス}}{セ}$である。
円OのAを含まない弧BC上に点Pを、△PBCの面積が最大となるようにとる。このとき
$PC=\sqrt{ソ}$
である。
また、直線AOと円Oとの交点のうち、Aと異なる方をDとすると
$CD= タ $
であり、
$∠ADC= チツ°$
である。
直線AD上に動点Qをとり、二つの線分$CQ$、$PQ$の長さの和を $L = CQ + PQ$ とする。
太郎:Lの最小値を求めるにはどうすればよいのかな。
花子:直線ADに関してCと対称な点を考えればよいね。
$AB^2\gt BC^2+CA^2$が成り立つから∠ACBは鈍角であり、直線ADに関して3 点B, C, Pがすべて同じ側にあることに注意して考えると、Lの最小値は$テ\sqrt{ト}$である。
第一問
[1]方程式$9x^2-6x-1=0$の二つの実数解をα,β(α<β)とすると
$α=\displaystyle \frac{ア-\sqrt{イ}}{ウ}$,$β=\displaystyle \frac{ア+\sqrt{イ}}{ウ}$
である。
(1)$n\lt\displaystyle \frac{1}{β}\lt n+1$を満たす整数nは エ である
(2)xについての連立不等式
$\left\{
\begin{array}{l}
αx \lt 1\\
βx \lt 1
\end{array}
\right.$
を考える。
αの符号に注意すると、不等式①の解は オ と表される。
よって連立不等式①かつ②の解は カ と表される。
オ の解答群
⓪ $x\lt\displaystyle \frac{1}{α}$ ① $\displaystyle \frac{1}{α}\lt x$
カ の解答群
⓪ $x\lt\displaystyle \frac{1}{α}$ ① $\displaystyle \frac{1}{α}\lt x\lt\displaystyle \frac{1}{β}$ ② $\displaystyle \frac{1}{β}\lt x$
(3)-9以上9以下の整数のうち、(2)の連立不等式①かつ②の解の範囲に含まれるものの個数は キ 個である。
[2]△ABCにおいて、$AB=7$,$BC=3\sqrt{2}$,$CA=5$とする。このとき
$cos ∠BAC=\displaystyle \frac{ク}{ケ}$,$sin ∠BAC=\displaystyle \frac{コ}{サ}$
である。
△ABCの外接円の中心Oとすると、円Oの半径は$\displaystyle \frac{シ\sqrt{ス}}{セ}$である。
円OのAを含まない弧BC上に点Pを、△PBCの面積が最大となるようにとる。このとき
$PC=\sqrt{ソ}$
である。
また、直線AOと円Oとの交点のうち、Aと異なる方をDとすると
$CD= タ $
であり、
$∠ADC= チツ°$
である。
直線AD上に動点Qをとり、二つの線分$CQ$、$PQ$の長さの和を $L = CQ + PQ$ とする。
太郎:Lの最小値を求めるにはどうすればよいのかな。
花子:直線ADに関してCと対称な点を考えればよいね。
$AB^2\gt BC^2+CA^2$が成り立つから∠ACBは鈍角であり、直線ADに関して3 点B, C, Pがすべて同じ側にあることに注意して考えると、Lの最小値は$テ\sqrt{ト}$である。
チャプター:
0:00 オープニング
0:05 第一問[1]
0:24 アイウ
0:43 エ
1:44 オカ
3:23 キ
4:53 第一問[2]
5:12 クケコサ
7:01 シスセ
7:32 ソ
12:23 タチツ
13:44 テト
17:42 テト
単元:
#大学入試過去問(数学)#全統模試(河合塾)#数学(高校生)
指導講師:
理数個別チャンネル
問題文全文(内容文):
第一問
[1]方程式$9x^2-6x-1=0$の二つの実数解をα,β(α<β)とすると
$α=\displaystyle \frac{ア-\sqrt{イ}}{ウ}$,$β=\displaystyle \frac{ア+\sqrt{イ}}{ウ}$
である。
(1)$n\lt\displaystyle \frac{1}{β}\lt n+1$を満たす整数nは エ である
(2)xについての連立不等式
$\left\{
\begin{array}{l}
αx \lt 1\\
βx \lt 1
\end{array}
\right.$
を考える。
αの符号に注意すると、不等式①の解は オ と表される。
よって連立不等式①かつ②の解は カ と表される。
オ の解答群
⓪ $x\lt\displaystyle \frac{1}{α}$ ① $\displaystyle \frac{1}{α}\lt x$
カ の解答群
⓪ $x\lt\displaystyle \frac{1}{α}$ ① $\displaystyle \frac{1}{α}\lt x\lt\displaystyle \frac{1}{β}$ ② $\displaystyle \frac{1}{β}\lt x$
(3)-9以上9以下の整数のうち、(2)の連立不等式①かつ②の解の範囲に含まれるものの個数は キ 個である。
[2]△ABCにおいて、$AB=7$,$BC=3\sqrt{2}$,$CA=5$とする。このとき
$cos ∠BAC=\displaystyle \frac{ク}{ケ}$,$sin ∠BAC=\displaystyle \frac{コ}{サ}$
である。
△ABCの外接円の中心Oとすると、円Oの半径は$\displaystyle \frac{シ\sqrt{ス}}{セ}$である。
円OのAを含まない弧BC上に点Pを、△PBCの面積が最大となるようにとる。このとき
$PC=\sqrt{ソ}$
である。
また、直線AOと円Oとの交点のうち、Aと異なる方をDとすると
$CD= タ $
であり、
$∠ADC= チツ°$
である。
直線AD上に動点Qをとり、二つの線分$CQ$、$PQ$の長さの和を $L = CQ + PQ$ とする。
太郎:Lの最小値を求めるにはどうすればよいのかな。
花子:直線ADに関してCと対称な点を考えればよいね。
$AB^2\gt BC^2+CA^2$が成り立つから∠ACBは鈍角であり、直線ADに関して3 点B, C, Pがすべて同じ側にあることに注意して考えると、Lの最小値は$テ\sqrt{ト}$である。
第一問
[1]方程式$9x^2-6x-1=0$の二つの実数解をα,β(α<β)とすると
$α=\displaystyle \frac{ア-\sqrt{イ}}{ウ}$,$β=\displaystyle \frac{ア+\sqrt{イ}}{ウ}$
である。
(1)$n\lt\displaystyle \frac{1}{β}\lt n+1$を満たす整数nは エ である
(2)xについての連立不等式
$\left\{
\begin{array}{l}
αx \lt 1\\
βx \lt 1
\end{array}
\right.$
を考える。
αの符号に注意すると、不等式①の解は オ と表される。
よって連立不等式①かつ②の解は カ と表される。
オ の解答群
⓪ $x\lt\displaystyle \frac{1}{α}$ ① $\displaystyle \frac{1}{α}\lt x$
カ の解答群
⓪ $x\lt\displaystyle \frac{1}{α}$ ① $\displaystyle \frac{1}{α}\lt x\lt\displaystyle \frac{1}{β}$ ② $\displaystyle \frac{1}{β}\lt x$
(3)-9以上9以下の整数のうち、(2)の連立不等式①かつ②の解の範囲に含まれるものの個数は キ 個である。
[2]△ABCにおいて、$AB=7$,$BC=3\sqrt{2}$,$CA=5$とする。このとき
$cos ∠BAC=\displaystyle \frac{ク}{ケ}$,$sin ∠BAC=\displaystyle \frac{コ}{サ}$
である。
△ABCの外接円の中心Oとすると、円Oの半径は$\displaystyle \frac{シ\sqrt{ス}}{セ}$である。
円OのAを含まない弧BC上に点Pを、△PBCの面積が最大となるようにとる。このとき
$PC=\sqrt{ソ}$
である。
また、直線AOと円Oとの交点のうち、Aと異なる方をDとすると
$CD= タ $
であり、
$∠ADC= チツ°$
である。
直線AD上に動点Qをとり、二つの線分$CQ$、$PQ$の長さの和を $L = CQ + PQ$ とする。
太郎:Lの最小値を求めるにはどうすればよいのかな。
花子:直線ADに関してCと対称な点を考えればよいね。
$AB^2\gt BC^2+CA^2$が成り立つから∠ACBは鈍角であり、直線ADに関して3 点B, C, Pがすべて同じ側にあることに注意して考えると、Lの最小値は$テ\sqrt{ト}$である。
投稿日:2024.05.17