福田の数学〜千葉大学2022年理系第2問〜三角形と三角比 - 質問解決D.B.(データベース)

福田の数学〜千葉大学2022年理系第2問〜三角形と三角比

問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{2}}\ 座標平面において、原点Oと点A(1,0)と点B(0,1)がある。0 \lt t \lt 1に対し、\\
線分BO,OA,ABのそれぞれをt:(1-t)に内分する点をP,Q,Rとする。\\
(1)\triangle PQRの面積をtの式で表せ。\\
(2)\triangle PQRが二等辺三角形になるときのtの値を全て求めよ。\\
(3)\theta = \angle RPQとする。(2)それぞれの場合に\cos\thetaを求めよ。
\end{eqnarray}

2022千葉大学理系過去問
単元: #数Ⅰ#大学入試過去問(数学)#図形と計量#三角比への応用(正弦・余弦・面積)#学校別大学入試過去問解説(数学)#千葉大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{2}}\ 座標平面において、原点Oと点A(1,0)と点B(0,1)がある。0 \lt t \lt 1に対し、\\
線分BO,OA,ABのそれぞれをt:(1-t)に内分する点をP,Q,Rとする。\\
(1)\triangle PQRの面積をtの式で表せ。\\
(2)\triangle PQRが二等辺三角形になるときのtの値を全て求めよ。\\
(3)\theta = \angle RPQとする。(2)それぞれの場合に\cos\thetaを求めよ。
\end{eqnarray}

2022千葉大学理系過去問
投稿日:2022.05.14

<関連動画>

福田のわかった数学〜高校1年生第6回〜絶対値(第2回)

アイキャッチ画像
単元: #数Ⅰ#数と式#一次不等式(不等式・絶対値のある方程式・不等式)#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
数学$\textrm{I}$ 絶対値(第2回)
次の方程式、不等式を解け。
(1)$|x+2|=-2x$ (2)$|x+2| \lt -2x$
この動画を見る 

絶対値と式の値 岡山理科大

アイキャッチ画像
単元: #数Ⅰ#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
$x-\frac{1}{x}=2$
$|x+\frac{1}{x}|=?$

岡山理科大学
この動画を見る 

福田の数学〜九州大学2022年文系第1問〜絶対値の付いた放物線と直線で囲まれた面積

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#2次関数#微分法と積分法#解と判別式・解と係数の関係#接線と増減表・最大値・最小値#学校別大学入試過去問解説(数学)#面積、体積#数学(高校生)#九州大学
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{1}}\ aを-3 \lt a \lt 13を満たす実数とし、次の曲線Cと直線lが接しているとする。\\
C:y=|x^2+(3-a)x-3a|, l:y=-x+13\\
以下の問いに答えよ。\\
(1)aの値を求めよ。\\
(2)曲線Cと直線lで囲まれた2つの図形のうち、点(a,0)が境界線上にある図形の面積を求めよ。
\end{eqnarray}

2022九州大学文系過去問
この動画を見る 

【ゼロからわかる】3乗の展開公式(高校数学Ⅰ)

アイキャッチ画像
単元: #数Ⅰ#数と式#式の計算(整式・展開・因数分解)#数学(高校生)
指導講師: 【ゼロから理解できる】高校数学・物理
問題文全文(内容文):
次の式を展開せよ。
(1)$(x+2)^3$
(2)$(3x-1)^3$
(3)$(2a-3b)^3$
この動画を見る 

福田の入試問題解説〜東京大学2022年理系第3問〜点の存在する条件と領域の面積

アイキャッチ画像
単元: #数Ⅰ#数Ⅱ#大学入試過去問(数学)#数と式#集合と命題(集合・命題と条件・背理法)#図形と方程式#軌跡と領域#学校別大学入試過去問解説(数学)#東京大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{3}}\ Oを原点とする座標平面上で考える。座標平面上の2点S(x_1,y_1),T(x_2,y_2)\\
に対し、点Sが点Tから十分離れているとは、\\
|x_1-x_2| \geqq 1 または |y_1-y_2| \geqq 1\\
が成り立つことと定義する。\\
不等式\\
0 \leqq x \leqq 3, 0 \leqq y \leqq 3\\
が表す正方形の領域をDとし、その2つの頂点A(3,0), B(3,3)を考える。\\
さらに、次の条件(\textrm{i}),(\textrm{ii})を共に満たす点Pをとる。\\
(\textrm{i})点Pは領域Dの点であり、かつ、放物線y=x^2上にある。\\
(\textrm{ii})点Pは、3点O,A,Bのいずれからも十分離れている。\\
点Pのx座標をaとする。\\
(1)aのとりうる値の範囲を求めよ。\\
(2)次の条件(\textrm{iii}),(\textrm{iv})をともに満たす点Qが存在しうる範囲の面積f(a)を求めよ。\\
(\textrm{iii})点Qは領域Dの点である。\\
(\textrm{iv})点Qは、4点O,A,B,Pのいずれからも十分離れている。\\
(3)aは(1)で求めた範囲を動くとする。(2)のf(a)を最小にするaの値を求めよ。
\end{eqnarray}

2022東京大学理系過去問
この動画を見る 
PAGE TOP