【数学】中2-7 単項式の乗法・除法 - 質問解決D.B.(データベース)

【数学】中2-7 単項式の乗法・除法

問題文全文(内容文):
暗算ができないときは、長~い①____を使う!
そのときに、②____のすぐ後ろの項
を③____にするのを忘れないでね!!

④$5x \times (-2y)=$
⑤$-32xy \div (-4y)=$
⑥$\displaystyle \frac{1}{2}x \times \displaystyle \frac{4}{3}x=$
⑦$10a^2 \div (-2a^2)=$
⑧$(-5x)^2=$
⑨$-(5x)^2=$
⑩$6x^2y \div \displaystyle \frac{3}{2}xy=$
【ポイント】
$\displaystyle \frac{3}{2}xy$は⑪____と同じ!!

⑫$-5x^2 \div 10x \times (-4x)=$
⑬$\displaystyle \frac{2}{3}xy^2 \div \displaystyle \frac{1}{9}xy \div 2x=$
⑭$(-2x) \times (-3y) \times (-4xy)=$
⑮$(-2a)^2 \times (-4b) \div \displaystyle \frac{8}{5}ab=$
単元: #数学(中学生)#中2数学#式の計算(単項式・多項式・式の四則計算)
指導講師: とある男が授業をしてみた
問題文全文(内容文):
暗算ができないときは、長~い①____を使う!
そのときに、②____のすぐ後ろの項
を③____にするのを忘れないでね!!

④$5x \times (-2y)=$
⑤$-32xy \div (-4y)=$
⑥$\displaystyle \frac{1}{2}x \times \displaystyle \frac{4}{3}x=$
⑦$10a^2 \div (-2a^2)=$
⑧$(-5x)^2=$
⑨$-(5x)^2=$
⑩$6x^2y \div \displaystyle \frac{3}{2}xy=$
【ポイント】
$\displaystyle \frac{3}{2}xy$は⑪____と同じ!!

⑫$-5x^2 \div 10x \times (-4x)=$
⑬$\displaystyle \frac{2}{3}xy^2 \div \displaystyle \frac{1}{9}xy \div 2x=$
⑭$(-2x) \times (-3y) \times (-4xy)=$
⑮$(-2a)^2 \times (-4b) \div \displaystyle \frac{8}{5}ab=$
投稿日:2013.03.15

<関連動画>

【高校受験対策】死守-2

アイキャッチ画像
単元: #数学(中学生)#中2数学#中3数学#式の計算(単項式・多項式・式の四則計算)#式の計算(展開、因数分解)
指導講師: とある男が授業をしてみた
問題文全文(内容文):
1.次の①~⑤の計算しなさい.

①$(-3)+7$

②$10a-2.5a$

③$2x^2 \div 4xy \times (-6y)$

④$a+2b-\dfrac{2a+5b}{3}$

⑤$\sqrt{45}-\sqrt 5$

2.次の①~③の問いに答えなさい.

①$-1.98 \lt x \lt \dfrac{9}{4}$を満たす整数$x$を,
小さい順に書きなさい.

②$(x+3)(x-4)-8$を因数分解しなさい.

③2次方程式$x(x+2)-5=0$を解きなさい.
この動画を見る 

【高校受験対策】数学-死守9

アイキャッチ画像
単元: #数学(中学生)#中1数学#中2数学#中3数学#方程式#式の計算(単項式・多項式・式の四則計算)#連立方程式#2次方程式#円#表とグラフ#表とグラフ・集合
指導講師: とある男が授業をしてみた
問題文全文(内容文):
次の各問に答えよ.

①$- 7 + 8 \times \left(-\dfrac{1}{4}\right)$を計算せよ.

②$9(a + b) - (a + 3b) $を計算せよ.

③$(\sqrt7 + 6)(\sqrt7 - 2)$ を計算せよ.

④一次方程式$ x - 5 = 3x + 1 $を解け.

⑤連立方程式
$\begin{eqnarray}
\left\{
\begin{array}{l}
4x-y=9 \\
x-6y=8
\end{array}
\right.
\end{eqnarray}$

⑥一次方程式 $x ^ 2 - 12x + 35 = 0 $を解け.

⑦右の表は,
ある中学校の3年生男子全体のハンドボール投げの記録を,
度数分布表に整理したものである.
26m以上投げた生徒の人数は,
3年生男子全体の何%か.

⑧右の図で,2点$C,D$は,線分$AB$を直径とする半円$O$の
$\stackrel{\huge\frown}{AB}$上にある点で,
$\stackrel{\huge\frown}{AC}=\dfrac{4}{9}\stackrel{\huge\frown}{AB},\stackrel{\huge\frown}{BD}=\dfrac{1}{3}\stackrel{\huge\frown}{AB}$である.
線分$AD$と線分$BC$の交点を$E$とするとき,
$\angle AEC$の大きさは何度か.

図は動画内を参照
この動画を見る 

【高校受験対策/数学】死守56

アイキャッチ画像
単元: #数学(中学生)#中1数学#中2数学#中3数学#正の数・負の数#式の計算(単項式・多項式・式の四則計算)#平方根#比例・反比例#資料の活用#2次関数
指導講師: とある男が授業をしてみた
問題文全文(内容文):
高校受験対策・死守56

①$4-6 \div (-2)$を計算しなさい。

②$(\sqrt{5}-1)^2+\sqrt{20}$を計算しなさい。

③$(2x+1)(3x-1)-(2x-1)(3x+1)$を計算しなさい。

④方程式$(x+1)(x-1) = 3(x+1)$を解きなさい。

⑤500円出して$a$円の鉛筆5本と $b$円の消しゴム1個を買うと、おつりがあった。
この数量の関係を不等式で表しなさい。

⑥2種類の体験学習A・Bがあり、生徒は必ずA・Bのいずれか一方に参加する。
A・Bそれぞれを希望する生徒の人数の比は$1:2$であった。
その後、14人の生徒がBからAへ希望を変更したため、A.Bそれぞれを希望する生徒の人数の比は$5:7$となった。
体験学習に参加する生徒の人数は何人か、求めなさい。

⑦関数に$y=x^2$について正しく述べたものを、次のア~エからすべて選びなさい。
ア $x$の値が増加すると、$y$の値も増加する。
イ グラフが$y$軸を対称の軸として線対称である。
ウ $x$の変域が$-1 \leqq x \leqq 2$のとき、その変域は$-1 \leqq y \leqq 4$
である。
エ $x$がどんな値をとっても、$y \geqq 0$である。

⑧男子生徒6人のハンドボール投げの記録は右のようであった。
6人のハンドボール投げの記録の中央値は何mか求めなさい。
この動画を見る 

高等学校入試予想問題:山形県~全国入試問題解法

アイキャッチ画像
単元: #数学(中学生)#中2数学#中3数学#式の計算(単項式・多項式・式の四則計算)#式の計算(展開、因数分解)#確率#2次関数#三角形と四角形#高校入試過去問(数学)
指導講師: 高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
$\boxed{1}$
(1)$2(a+4b)+3(a-2b)$を計算せよ.
(2)$\sqrt{27}-\dfrac{6}{\sqrt3}$を計算せよ.
(3)$(x+1)^2+(x-4)(x+2)$を計算せよ.
(4)袋の中に赤玉2個と白玉1個.この袋から玉を1個取り出し,色を調べて戻す.
もう1度玉を取り出すとき,2個共赤玉が出る確率を求めよ.

$\boxed{2}$
(1)$a$の値は?
(2)点$c$の$y$座標
(3)$\triangle ABC$の面積は?
(4)2点$A,B$を通る直線の式は?

$\boxed{3}$
(1)$\triangle AFC \equiv \triangle BEC$の証明をせよ.
(2)$\triangle=40cm^2$のとき,$\triangle ABF=20cm^2$のとき,$AF=?$

山形県立高校過去問
この動画を見る 

【高校受験対策】数学-死守5

アイキャッチ画像
単元: #数学(中学生)#中2数学#中3数学#式の計算(単項式・多項式・式の四則計算)#連立方程式#式の計算(展開、因数分解)#2次方程式
指導講師: とある男が授業をしてみた
問題文全文(内容文):
1.次の計算をしなさい.

①$1-7$

②$(-3)^2\times 2-5\times 3$

③$\dfrac{2}{3}-\dfrac{7}{10}\div \left(-\dfrac{7}{15}\right)$

④$2(x+3y)-(2x-y)$

⑤$\sqrt8+\sqrt6\times \sqrt3$

2,つぎの各問に答えなさい.

⑥$x^2+5x$を因数分解しなさい.

⑦連立方程式
$\begin{eqnarray}
\left\{
\begin{array}{l}
5x-3y=-1 \\
x+6y=13
\end{array}
\right.
\end{eqnarray}$を解きなさい.

⑧2次方程式$3^2-5x+1=0$を解きなさい.

⑨$3a+b=10$を$a$について解きなさい.

⑩$15:(x-2)=3:2$であるとき,
$x$の値を求めなさい.
この動画を見る 
PAGE TOP