【高校数学】共通テスト(プレテスト)大問1の[1]~ちゃっちゃと解説~【数学ⅠA】 - 質問解決D.B.(データベース)

【高校数学】共通テスト(プレテスト)大問1の[1]~ちゃっちゃと解説~【数学ⅠA】

問題文全文(内容文):
共通テスト(プレテスト)の解説動画です
単元: #大学入試過去問(数学)#センター試験・共通テスト関連#共通テスト#数学(高校生)
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
共通テスト(プレテスト)の解説動画です
投稿日:2019.08.15

<関連動画>

共通テスト2021年数学詳しい解説〜共通テスト2021年IA第4問〜円周上の点の移動と整数解

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#ユークリッド互除法と不定方程式・N進法#センター試験・共通テスト関連#共通テスト#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
${\large第4問}$
円周上に15個の点$P_0,P_1,\ldots,P_{14}$が反時計回りに順に並んでいる。最初、
点$P_0$に石がある。さいころを投げて偶数の目が出たら石を反時計回りに5個先
の点に移動させ、奇数の目が出たら石を時計回りに3個先の点に移動させる。
この操作を繰り返す。例えば、石が点$P_5$にあるとき、さいころを投げて6の目が
出たら石を点$P_{10}$に移動させる。次に、5の目が出たら点$P_{10}$にある石を
点$P_7$に移動させる。

(1)さいころを5回投げて、偶数の目が$\boxed{\ \ ア\ \ }$回、奇数の目が$\boxed{\ \ イ\ \ }$回
出れば、点$P_0$にある石を点$P_1$に移動させることができる。このとき、
$x=\boxed{\ \ ア\ \ },$ $y=\boxed{\ \ イ\ \ }$は、不定方程式$5x-3y=1$の整数解に
なっている。

(2)不定方程式
$5x-3y=8$ $\cdots$①
の全ての整数解$x,y$は、$k$を整数として

$x=\boxed{\ \ ア\ \ }×8+\boxed{\ \ ウ\ \ }\ k,$ $y=\boxed{\ \ イ\ \ }×8+\boxed{\ \ エ\ \ }\ k$

と表される。①の整数解$x,y$の中で、$0 \leqq y \lt \boxed{\ \ エ\ \ }$を満たすものは

$x=\boxed{\ \ オ\ \ },$ $y=\boxed{\ \ カ\ \ }$

である。したがって、さいころを$\boxed{\ \ キ\ \ }$回投げて、偶数の目が$\boxed{\ \ オ\ \ }$回、
奇数の目が$\boxed{\ \ カ\ \ }$回出れば、点$P_0$にある石を点$P_8$に移動させることが
できる。

(3)(2)において、さいころを$\boxed{\ \ キ\ \ }$回より少ない回数だけ投げて、点$P_0$
にある石を点$P_8$に移動させることはできないだろうか。

(*)石を反時計回りまたは時計回りに15個先の点に移動させると
元の点に戻る。

(*)に注意すると、偶数の目が$\boxed{\ \ ク\ \ }$回、奇数の目が$\boxed{\ \ ケ\ \ }$回出れば、
さいころを投げる回数が$\boxed{\ \ コ\ \ }$回で、点$P_0$にある石を点$P_8$に移動させる
ことができる。このとき、$\boxed{\ \ コ\ \ } \lt \boxed{\ \ キ\ \ }$ である。

(4)点$P_1,P_2,\cdots,P_{14}$のうちから点を一つ選び、点$P_0$にある石をさいころを
何回か投げてその点に移動させる。そのために必要となる、さいころを
投げる最小回数を考える。例えば、さいころを1回投げて点$P_0$にある石を
点$P_2$へ移動させることはできないが、さいころを2回投げて偶数の目と
奇数の目が1回ずつ出れば、点$P_0$にある石を点$P_2$へ移動させることができる。
したがって、点$P_2$を選んだ場合には、この最小回数は2回である。
点$P_1,P_2,\cdots,P_{14}$のうち、この最小回数が最も大きいのは点$\boxed{\boxed{\ \ サ\ \ }}$であり、
その最小回数は$\boxed{\ \ シ\ \ }$回である。

$\boxed{\boxed{\ \ サ\ \ }}$の解答群
⓪$P_{10}$
①$P_{11}$
②$P_{12}$
③$P_{13}$
④$P_{14}$

2021共通テスト過去問
この動画を見る 

福田の共通テスト直前演習〜2021年共通テスト数学ⅡB問題2。微分積分の問題。

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#接線と増減表・最大値・最小値#センター試験・共通テスト関連#共通テスト#面積、体積#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
[1]aを実数とし、$f(x)=x^3-6ax+16$
(1)$y=f(x)$のグラフの概形は
$a=0$のとき、$\boxed{\ \ ア\ \ }$
$a \gt 0$のとき、$\boxed{\ \ イ\ \ }$
である.

$\boxed{\ \ ア\ \ },\boxed{\ \ イ\ \ }$については、最も適当なものを、次の⓪~⑤のうちから
1つずつ選べ。ただし、同じものを繰り返し選んでもよい。
(※選択肢は動画参照)

(2)$a \gt 0$とし、pを実数とする。座標平面上の曲線$y=f(x)$と直線$y=p$
が3個の共有点をもつようなpの値の範囲は$\boxed{\ \ ウ\ \ } \lt p \lt \boxed{\ \ エ\ \ }$
である。
$p=\boxed{\ \ ウ\ \ }$のとき、曲線$y=f(x)$と直線$y=p$は2個の共有点をもつ。
それらのx座標を$q,r(q \lt r)$とする。曲線$y=f(x)$と直線$y=p$
が点(r,p)で接することに注意すると
$q=\boxed{\ \ オカ\ \ }\sqrt{\boxed{\ \ キ\ \ }}\ a^{\frac{1}{2}}, r=\sqrt{\boxed{\ \ ク\ \ }}\ a^{\frac{1}{2}}$
と表せる。

$\boxed{\ \ ウ\ \ }, \boxed{\ \ エ\ \ }$の解答群(同じものを繰り返し選んでもよい。)
⓪$2\sqrt2a^{\frac{3}{2}}+16$ ①$-2\sqrt2a^{\frac{3}{2}}+16$
②$4\sqrt2a^{\frac{3}{2}}+16$ ③$-4\sqrt2a^{\frac{3}{2}}+16$
④$8\sqrt2a^{\frac{3}{2}}+16$ ⑤$-8\sqrt2a^{\frac{3}{2}}+16$

(3)方程式$f(x)=0$の異なる実数解の個数をnとする。次の⓪~⑤のうち、
正しいものは$\boxed{\ \ ケ\ \ }$と$\boxed{\ \ コ\ \ }$である。

$\boxed{\ \ ケ\ \ }, \boxed{\ \ コ\ \ }$の解答群(解答の順序は問わない。)

$⓪n=1ならばa \lt 0 ①a \lt 0ならばn=1$
$②n=2ならばa \lt 0 ③a \lt 0ならばn=2$
$④n=2ならばa \gt 0 ⑤a \gt 0ならばn=3$

[2]$b \gt 0$とし、$g(x)=x^3-3bx+3b^2, h(x)=x^3-x^2+b^2$とおく。
座標平面上の曲線$y=g(x)$を$C_1$, 曲線$y=h(x)$を$C_2$とする。

$C_1$と$C_2$は2点で交わる。これらの交点のx座標をそれぞれ$\alpha,\beta$
$(\alpha \lt \beta)$とすると、$\alpha=\boxed{\ \ サ\ \ }, \beta=\boxed{\ \ シス\ \ }$である。
$\alpha \leqq x \leqq \beta$の範囲で$C_1$と$C_2$で囲まれた図形の面積をSとする。また、
$t \gt \beta$とし、$\beta \leqq x \leqq t$の範囲で$C_1$と$C_2$および直線$x=t$で囲まれた図形の
面積をTとする。
このとき
$S=\int_{\alpha}^{\beta}\boxed{\ \ セ\ \ }dx$
$T=\int_{\beta}^{t}\boxed{\ \ ソ\ \ }dx$
$S-T=\int_{\alpha}^{t}\boxed{\ \ タ\ \ }dx$
であるので
$S-T=\frac{\boxed{\ \ チツ\ \ }}{\boxed{\ \ テ\ \ }}(2t^3-\ \boxed{\ \ ト\ \ }bt^2+\boxed{\ \ ナニ\ \ }b^2t-\ \boxed{\ \ ヌ\ \ }b^3)$
が得られる。
したがって、$S=T$となるのは$t=\frac{\boxed{\ \ ネ\ \ }}{\boxed{\ \ ノ\ \ }}\ b$のときである。

$\boxed{\ \ セ\ \ }~\boxed{\ \ タ\ \ }$の解答群(同じものを繰り返し選んでもよい。)
$⓪\left\{g(x)+h(x)\right\} ①\left\{g(x)-h(x)\right\}$
$②\left\{h(x)-g(x)\right\} ③\left\{2g(x)+2h(x)\right\}$
$④\left\{2g(x)-2h(x)\right\} ⑤\left\{2h(x)-2g(x)\right\}$
$⑥2g(x) ⑦2h(x)$

2022共通テスト数学過去問
この動画を見る 

2024年共通テスト徹底解説〜数学ⅡB第5問ベクトル〜福田の入試問題解説

アイキャッチ画像
単元: #大学入試過去問(数学)#平面上のベクトル#平面上のベクトルと内積#センター試験・共通テスト関連#共通テスト#数学(高校生)#大学入試解答速報#数学#共通テスト#数C
指導講師: 福田次郎
問題文全文(内容文):
共通テスト2024の数学ⅡB第5問ベクトルを徹底解説します

この動画を見る 

【共通テスト】数学ⅠA公式出題ランキング!この公式はおさえておけ!

アイキャッチ画像
単元: #大学入試過去問(数学)#センター試験・共通テスト関連#共通テスト#数学(高校生)
指導講師: 篠原好【京大模試全国一位の勉強法】
問題文全文(内容文):
共通テストⅠAでおさえておくべき公式は??ランキングでまとめました
この動画を見る 

2024年共通テスト徹底解説〜数学ⅡB第1問(2)整式の除法〜福田の入試問題解説

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#式と証明#整式の除法・分数式・二項定理#センター試験・共通テスト関連#共通テスト#数学(高校生)#大学入試解答速報#数学#共通テスト
指導講師: 福田次郎
問題文全文(内容文):
共通テスト2024の数学ⅡB第1問(2)整数の除法を徹底解説します

2024共通テスト過去問
この動画を見る 
PAGE TOP