【中学数学】多項式の加法減法の問題演習~計算ミスしない方法~ 1-3【中2数学】 - 質問解決D.B.(データベース)

【中学数学】多項式の加法減法の問題演習~計算ミスしない方法~ 1-3【中2数学】

問題文全文(内容文):
$\displaystyle
(1)\, (3x+2y)+(x+7y)
$
$\displaystyle
(2)\, (5a-3b)+(-a+6b)
$
$\displaystyle
(3)\, (3x^2+y)+(7x^2+3)
$
$\displaystyle
(4)\, (4x+y)-(20x+5y)
$
$\displaystyle
(5)\, (s+3t)-(-s+2t)
$
$\displaystyle
(6)\, (r+x^2)-(x^2-4r)
$
$\displaystyle
(7)\, (6a-3b)-(6a-2b)
$
$\displaystyle
(8)\, (x^2-x-3)-(6x^2+3x-1)
$
$\displaystyle
(9)\, (6x-6y-3)+(5x-4y-8)
$
$\displaystyle
(10)\, (11a-7b-c)-(a-4b+c)
$
単元: #数学(中学生)#中2数学#式の計算(単項式・多項式・式の四則計算)
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
$\displaystyle
(1)\, (3x+2y)+(x+7y)
$
$\displaystyle
(2)\, (5a-3b)+(-a+6b)
$
$\displaystyle
(3)\, (3x^2+y)+(7x^2+3)
$
$\displaystyle
(4)\, (4x+y)-(20x+5y)
$
$\displaystyle
(5)\, (s+3t)-(-s+2t)
$
$\displaystyle
(6)\, (r+x^2)-(x^2-4r)
$
$\displaystyle
(7)\, (6a-3b)-(6a-2b)
$
$\displaystyle
(8)\, (x^2-x-3)-(6x^2+3x-1)
$
$\displaystyle
(9)\, (6x-6y-3)+(5x-4y-8)
$
$\displaystyle
(10)\, (11a-7b-c)-(a-4b+c)
$
投稿日:2022.06.04

<関連動画>

中2数学「式による説明③(2けたの自然数)」【毎日配信】

アイキャッチ画像
単元: #数学(中学生)#中2数学#式の計算(単項式・多項式・式の四則計算)
指導講師: 中学受験算数・高校受験数学けいたくチャンネル
問題文全文(内容文):
中2~第10回式による説明③~ (2けたの自然数)

例題
2けたの自然数と、その数の十の位の数と一の位の数を入れかえでできる数 との和が11の倍数になる ことを 説明しなさ い。
この動画を見る 

【数学】中2-5 いろいろな多項式の計算②

アイキャッチ画像
単元: #数学(中学生)#中2数学#式の計算(単項式・多項式・式の四則計算)
指導講師: とある男が授業をしてみた
問題文全文(内容文):
【レベル3】
計算せよ。
①$\displaystyle \frac{x-3y}{2}-\displaystyle \frac{5x+2y}{3}$
通分したら②____を使おう!!
③$x+3y-\displaystyle \frac{2x+7y}{3}$
④$\displaystyle \frac{1}{8}(7)(-2y)+\displaystyle \frac{1}{2}(x+2y)$
⑤$\displaystyle \frac{3}{2}(x-3y)-\displaystyle \frac{1}{3}(7x-2y)$
この動画を見る 

【数学】中2-7 単項式の乗法・除法

アイキャッチ画像
単元: #数学(中学生)#中2数学#式の計算(単項式・多項式・式の四則計算)
指導講師: とある男が授業をしてみた
問題文全文(内容文):
暗算ができないときは、長~い①____を使う!
そのときに、②____のすぐ後ろの項
を③____にするのを忘れないでね!!

④$5x \times (-2y)=$
⑤$-32xy \div (-4y)=$
⑥$\displaystyle \frac{1}{2}x \times \displaystyle \frac{4}{3}x=$
⑦$10a^2 \div (-2a^2)=$
⑧$(-5x)^2=$
⑨$-(5x)^2=$
⑩$6x^2y \div \displaystyle \frac{3}{2}xy=$
【ポイント】
$\displaystyle \frac{3}{2}xy$は⑪____と同じ!!

⑫$-5x^2 \div 10x \times (-4x)=$
⑬$\displaystyle \frac{2}{3}xy^2 \div \displaystyle \frac{1}{9}xy \div 2x=$
⑭$(-2x) \times (-3y) \times (-4xy)=$
⑮$(-2a)^2 \times (-4b) \div \displaystyle \frac{8}{5}ab=$
この動画を見る 

気付けば一瞬!!式の値 受験生よ。努力が実ることを証明せよ。

アイキャッチ画像
単元: #数学(中学生)#中2数学#式の計算(単項式・多項式・式の四則計算)
指導講師: 数学を数楽に
問題文全文(内容文):
$x+\frac{1}{x}=99$のとき
$\frac{2x^2+102x+2}{100x}$の値は?
この動画を見る 

【高校受験対策】数学-死守36

アイキャッチ画像
単元: #数学(中学生)#中2数学#中3数学#式の計算(単項式・多項式・式の四則計算)#式の計算(展開、因数分解)#平方根
指導講師: とある男が授業をしてみた
問題文全文(内容文):
高校受験対策・死守36

①$5+4 \times 6$を計算せよ

②$\frac{9}{5}\div 0.8-\frac{1}{2}$を計算せよ

③$\sqrt{60}\div \sqrt{5}+\sqrt{27}$を計算せよ

④比例式$3:4=(x-6):8$について$x$の値を求めよ。

⑤$3x^2+9x-12$を因数分解せよ。

⑥$n$を50以下の正の整数とするとき、$\sqrt{5n}$の値が整数となるような$n$の値をすべて求めよ。

⑦次の口と△にどんな自然数を入れても、計算の結果がつねに自然数 になるものはどれか。
下のア~エの中からあてはまるものをすべて答えよ。

ア 口+△
イ 口-△
ウ 口×△
エ 口÷△

⑧大小2つのさいころを同時に投げる。
大きいさいころの出た目の数を$x$座標、小さいさいころの出た目の数を$y$座標とする点を$P(x,y)$とするとき、点$P$が1次関数$y=-x+8$のグラフ上の点となる確率を求めよ。

⑨右の図は半径$rcm$の球を切断して できた半球で、切断面の円周の長さは$4\pi cm$であった。
このとき$r$の値を求めよ。
また、この半球の体積は何$cm^3$か。 ただし$\pi$は円周率とする。
この動画を見る 
PAGE TOP