問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{1}} (1)正の実数x,\ yについて、xとyの相加平均を5とする。また、4を底とする\\
x,\ yの対数をそれぞれX,\ Yとしたとき、XとYの相加平均は1であるとする。\\
このとき、x \lt yとすると、x=\boxed{\ \ ア\ \ }, y=\boxed{\ \ イ\ \ } である。
\end{eqnarray}
2021慶應義塾大学商学部過去問
\begin{eqnarray}
{\Large\boxed{1}} (1)正の実数x,\ yについて、xとyの相加平均を5とする。また、4を底とする\\
x,\ yの対数をそれぞれX,\ Yとしたとき、XとYの相加平均は1であるとする。\\
このとき、x \lt yとすると、x=\boxed{\ \ ア\ \ }, y=\boxed{\ \ イ\ \ } である。
\end{eqnarray}
2021慶應義塾大学商学部過去問
単元:
#数Ⅱ#大学入試過去問(数学)#指数関数と対数関数#対数関数#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{1}} (1)正の実数x,\ yについて、xとyの相加平均を5とする。また、4を底とする\\
x,\ yの対数をそれぞれX,\ Yとしたとき、XとYの相加平均は1であるとする。\\
このとき、x \lt yとすると、x=\boxed{\ \ ア\ \ }, y=\boxed{\ \ イ\ \ } である。
\end{eqnarray}
2021慶應義塾大学商学部過去問
\begin{eqnarray}
{\Large\boxed{1}} (1)正の実数x,\ yについて、xとyの相加平均を5とする。また、4を底とする\\
x,\ yの対数をそれぞれX,\ Yとしたとき、XとYの相加平均は1であるとする。\\
このとき、x \lt yとすると、x=\boxed{\ \ ア\ \ }, y=\boxed{\ \ イ\ \ } である。
\end{eqnarray}
2021慶應義塾大学商学部過去問
投稿日:2021.07.11