【中2 P.54】2編の力だめし - 質問解決D.B.(データベース)

【中2 P.54】2編の力だめし

問題文全文(内容文):
次の計算をしなさい.

1.①$\begin{eqnarray}
\left\{
\begin{array}{l}
x=y-3 \\
4(x-2)=3(y-6)
\end{array}
\right.
\end{eqnarray}$

②$3x-y=-2x+3y=7$

③$\begin{eqnarray}
\left\{
\begin{array}{l}
0.2x+0.3y=1 \\
x-14=3y
\end{array}
\right.
\end{eqnarray}$

④$\begin{eqnarray}
\left\{
\begin{array}{l}
\dfrac{x}{3}+\dfrac{x}{4}=3 \\
2(x+1)=5y-6
\end{array}
\right.
\end{eqnarray}$

2
$\begin{eqnarray}
\left\{
\begin{array}{l}
x-5y=8 \\
3x+2y=7
\end{array}
\right.
\end{eqnarray}$

図は動画内参照
単元: #数学(中学生)#中2数学#連立方程式
指導講師: とある男が授業をしてみた
問題文全文(内容文):
次の計算をしなさい.

1.①$\begin{eqnarray}
\left\{
\begin{array}{l}
x=y-3 \\
4(x-2)=3(y-6)
\end{array}
\right.
\end{eqnarray}$

②$3x-y=-2x+3y=7$

③$\begin{eqnarray}
\left\{
\begin{array}{l}
0.2x+0.3y=1 \\
x-14=3y
\end{array}
\right.
\end{eqnarray}$

④$\begin{eqnarray}
\left\{
\begin{array}{l}
\dfrac{x}{3}+\dfrac{x}{4}=3 \\
2(x+1)=5y-6
\end{array}
\right.
\end{eqnarray}$

2
$\begin{eqnarray}
\left\{
\begin{array}{l}
x-5y=8 \\
3x+2y=7
\end{array}
\right.
\end{eqnarray}$

図は動画内参照
投稿日:2016.07.14

<関連動画>

指数の連立方程式

アイキャッチ画像
単元: #数学(中学生)#中2数学#連立方程式#数Ⅱ#指数関数と対数関数#指数関数#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
\begin{eqnarray}
\left\{
\begin{array}{l}
2^{x-y}-x-y=0 \\
2-(x+y)^{x-y} = 0
\end{array}
\right.
\end{eqnarray}
x=? y=?
この動画を見る 

【中学数学】三角形の面積を求める問題演習~解き方と考え方~【中2数学】

アイキャッチ画像
単元: #数学(中学生)#中2数学#三角形と四角形
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
動画内の図の$\triangle ABC$において,$AD=CD$、$BE:EC=1:2 BF//ED$である。
$\triangle ABC$の面積が$120cm^2$であるとき$\triangle FED$の面積を求めよ。
この動画を見る 

連立方程式

アイキャッチ画像
単元: #連立方程式#複素数と方程式#剰余の定理・因数定理・組み立て除法と高次方程式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$x,y,z$は実数とする.これを解け.

これを解け.

$\begin{eqnarray}
\left\{
\begin{array}{l}
xy+x+y=1 \\
x^2y^2+x^2+y^2=31
\end{array}
\right.
\end{eqnarray}$
この動画を見る 

【テスト対策 中1】4章-6

アイキャッチ画像
単元: #数学(中学生)#中2数学#1次関数
指導講師: とある男が授業をしてみた
問題文全文(内容文):
右の図において、①は関数$y=ax$、②は関数$y=\dfrac{18}{x}$のグラフである。
点$A$は①と②の交点で、その$y$座標は6である。
このとき、次の問いに答えなさい。

(1)点$A$の座標を求めなさい。

(2)定数$a$の値を求めなさい。

(3)②のグラフ上の点で、$x$座標と$y$座標がともに整数となる点は
全部で何個あるか求めなさい。

(4)点$A$から$x$軸、$y$軸にひいた垂線が$x$軸、$y$軸と交わる点をそれぞれ
$B、C$とし、①のグラフ上に点$P$、$y$軸上に$y$標が8である点をとる。
三角形$OPQ$の面積が四角形$OBAC$の面積と等しくなるとき、
点$P$の座標をすべて求めなさい。

図は動画内参照
この動画を見る 

こんな解き方あり!?

アイキャッチ画像
単元: #数学(中学生)#中2数学#平行と合同
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
【中学数学】この形の問題の裏技集 外角の二等分線
この動画を見る 
PAGE TOP