式の値 数I - 質問解決D.B.(データベース)

式の値 数I

問題文全文(内容文):
$a>0$ , $a^2+\frac{1}{a^2}=3$のとき
$a^3+ \frac{1}{a^3} = ?$

神奈川大学
単元: #数Ⅰ#大学入試過去問(数学)#数と式#式の計算(整式・展開・因数分解)#一次不等式(不等式・絶対値のある方程式・不等式)#学校別大学入試過去問解説(数学)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
$a>0$ , $a^2+\frac{1}{a^2}=3$のとき
$a^3+ \frac{1}{a^3} = ?$

神奈川大学
投稿日:2022.05.29

<関連動画>

福田の1日1題わかった数学〜高校1年生第2回〜因数分解

アイキャッチ画像
単元: #数Ⅰ#数と式#式の計算(整式・展開・因数分解)#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
数学$\textrm{I}$ 数と式
$(a-b)^3+(b-c)^3+(c-a)^3$
を因数分解せよ。
この動画を見る 

福田の数学〜3乗根のおおよその値を知る方法〜早稲田大学2023年社会科学部第3問〜3乗根と2重根号を簡単にする

アイキャッチ画像
単元: #数Ⅰ#数Ⅱ#大学入試過去問(数学)#数と式#式と証明#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#指数関数と対数関数#恒等式・等式・不等式の証明#指数関数#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$a=\sqrt[3]{5\sqrt{2}+7}-\sqrt[3]{5\sqrt{2}-7}$とする。
(1)$a^3$を$a$の1次式で表せ。
(2)$a$は整数であることを示せ。
(3)$b=a=\sqrt[3]{5\sqrt{2}+7}+\sqrt[3]{5\sqrt{2}-7}$
を超えない最大の整数を求めよ。

2023早稲田大学社会科学部過去問
この動画を見る 

慶応高校 一言言いたいだけの動画

アイキャッチ画像
単元: #数Ⅰ#数と式#式の計算(整式・展開・因数分解)#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
因数分解せよ.
$(a^2-2a-6)(a^2-2a-17)+18$

2021慶應義塾高過去問
この動画を見る 

福田の数学〜立教大学2025理学部第4問〜整式がある数の倍数であることの証明

アイキャッチ画像
単元: #数Ⅰ#数A#数と式#式の計算(整式・展開・因数分解)#整数の性質#約数・倍数・整数の割り算と余り・合同式#数列#数学的帰納法#数学(高校生)#数B
指導講師: 福田次郎
問題文全文(内容文):
$\boxed{4}$

$n$を$2$以上の自然数とする。次の問いに答えよ。

(1)$n^3-n$は$6$のばいすうであることを示せ。

(2)$n^4+2n^3-n^2-2n$は$24$の倍数であることを示せ。

(3)$n$に関する数学的帰納法を用いて、

$n^5+4n$は$5$の倍数であることを示せ。

(4)$n^9+2n^8-n^7-2n^6+4n^5+8n^4-4n^3-8n^2$は

$120$の倍数であることを示せ。

$2025$年立教大学理学部過去問題
この動画を見る 

福田のわかった数学〜高校1年生022〜2次方程式の解の分離

アイキャッチ画像
単元: #数Ⅰ#2次関数#2次方程式と2次不等式#2次関数とグラフ#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
数学$\textrm{I}$ 2次方程式の解の分離
$a \geqq 0$のとき、
$x^2-(a+1)x-a=0$
の実数解の取り得る値の範囲を求めよ。
この動画を見る 
PAGE TOP