福岡教育大 指数関数の最小値 微分 - 質問解決D.B.(データベース)

福岡教育大 指数関数の最小値 微分

問題文全文(内容文):
$0 \lt a \lt 1,x \geqq 0$
$y=a^{3x}+a^{-3x}-9(a^{2x}+a^{-2x})+$
$27(a^{x}+a^{-x})$の最小値とそのときの$x$を求めよ

出典:2005年福岡教育大学 過去問
単元: #数Ⅱ#大学入試過去問(数学)#指数関数と対数関数#学校別大学入試過去問解説(数学)#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$0 \lt a \lt 1,x \geqq 0$
$y=a^{3x}+a^{-3x}-9(a^{2x}+a^{-2x})+$
$27(a^{x}+a^{-x})$の最小値とそのときの$x$を求めよ

出典:2005年福岡教育大学 過去問
投稿日:2020.03.31

<関連動画>

福田の数学〜立教大学2021年経済学部第1問(5)〜対数方程式

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#指数関数と対数関数#対数関数#数列#漸化式#学校別大学入試過去問解説(数学)#立教大学#数学(高校生)#数B
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{1}}$(5)$x$についての方程式
$(\log_2x)^2+5\log_2x+2=0$
の2つの解を$\alpha,\beta$とおくと、$\alpha\beta=\boxed{キ}$である。

2021立教大学経済学部過去問
この動画を見る 

【意外とできない人が多い】アポロニウスの円について3分で解説!〔数学、高校数学〕

アイキャッチ画像
単元: #数Ⅱ#図形と方程式#点と直線#数学(高校生)
指導講師: 3rd School
問題文全文(内容文):
アポロニウスの円について解説します。
2点A(-2,0)と点B(4,0)からの距離の比が2:1であるような点軌跡を求めよ。
この動画を見る 

福田のおもしろ数学211〜証明しやすく変形するコツ〜不等式の証明

アイキャッチ画像
単元: #数Ⅱ#微分法と積分法#接線と増減表・最大値・最小値#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$x>0, \, y>0, \, 0 < p < 1$ のとき、$(x+y)^p < x^p+y^p$ が成り立つことを示せ。
この動画を見る 

13兵庫県教員採用試験(数学:2番 微分)

アイキャッチ画像
単元: #数Ⅱ#微分法と積分法#その他#数学(高校生)#教員採用試験
指導講師: ますただ
問題文全文(内容文):
2⃣
$C_1:y=x^2-4x+36$ , $C_2:y=4x^2+8x$の共通接線の方程式を求めよ。
この動画を見る 

小数のマイナス乗

アイキャッチ画像
単元: #数Ⅱ#指数関数と対数関数#指数関数#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
$(0.2)^{-2}$
この動画を見る 
PAGE TOP