方程式を解け - 質問解決D.B.(データベース)

方程式を解け

問題文全文(内容文):
$\frac{x^4 -16}{x^2 + 4} = 0$
単元: #数A#整数の性質#ユークリッド互除法と不定方程式・N進法#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
$\frac{x^4 -16}{x^2 + 4} = 0$
投稿日:2023.03.25

<関連動画>

奈良教育大 あまりの問題

アイキャッチ画像
単元: #整数の性質#奈良教育大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
2023奈良大学過去問題
7で割ったら3余り、17で割ったら8余る自然数3桁で最大は?
この動画を見る 

福田のおもしろ数学270〜3変数の不定方程式の自然数解

アイキャッチ画像
単元: #数A#整数の性質#ユークリッド互除法と不定方程式・N進法#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
正の整数 $a,b,c$ で $ (1 + \frac{1}{a})(1+ \frac{1}{b})(1 + \frac{1}{c}) = 2 $ を満たすものをすべて求めよ。
この動画を見る 

2023高校入試解説29問目 整数問題その1 早稲田本庄

アイキャッチ画像
単元: #数学(中学生)#数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#高校入試過去問(数学)
指導講師: 数学を数楽に
問題文全文(内容文):
$h(m,n) = \frac{1}{2}(m+n)(m+n-1)-m+1$と定める。(m,nは正の整数)
$h(3m,3m+4) = 1987$を満たすmをすべて求めよ。

2023早稲田大学 本庄高等学院
この動画を見る 

京都大学入試問題 3次方程式が整数解を持たない時、解は無理数であることの証明 高校数学

アイキャッチ画像
単元: #数Ⅰ#数A#大学入試過去問(数学)#数と式#集合と命題(集合・命題と条件・背理法)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
方程式$x^3+x-8=0$は
(1)ただ1つの実根を1と2との間にもつことを示せ。

(2)この根は無理数であることを証明せよ。

京大過去問
この動画を見る 

【数A】【図形の性質】円に内接する図形 ※問題文は概要欄

アイキャッチ画像
単元: #数A#図形の性質#内心・外心・重心とチェバ・メネラウス#数学(高校生)
教材: #4S数学#4S数学Ⅰ+AのB問題解説(新課程2022年以降)#図形の性質#中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
円oにおいて、平行な2つの弦をAA´、BB´とし、AB´とA´Bが円の内部の点Pで交わっている。このとき、∠APB=∠AOBであることを証明せよ。
鋭角三角形ABCの垂心をHとし、AHがBCと交わる点をD、△ABCの外接円と交わる点をEとする。このとき、Dは線分HEの中点であることを証明せよ。
下の図において、角θを求めよ。
この動画を見る 
PAGE TOP