【高校受験対策/数学】関数55 - 質問解決D.B.(データベース)

【高校受験対策/数学】関数55

問題文全文(内容文):
高校受験対策・関数55

Q.
図1のように、関数$y=-\frac{1}{4}x^2$・・・①のグラフ上に点$A(4,-4)$があり、$x$軸上に点$P$がある。
また、点$B(-2,-4)$がある。

問1
関数$y=-\frac{1}{4}x^2$について、$x$の変域が$-6 \leqq x \leqq 1$のとき、$y$の変域を求めなさい。

問2
$\triangle PAB$が二等辺三角形となる$P$はいくつあるか、求めなさい。

問3
図2のように、関数$y=ax^2(a \gt0)$・・・②のグラフ上に、 $x$座標が$-3$である点$D$がある。
$P$の$x$座標が$4$のとき、四角形$PABD$の面積が$50$となるような$a$の値を求めなさい。
単元: #数学(中学生)#中3数学#2次関数
指導講師: とある男が授業をしてみた
問題文全文(内容文):
高校受験対策・関数55

Q.
図1のように、関数$y=-\frac{1}{4}x^2$・・・①のグラフ上に点$A(4,-4)$があり、$x$軸上に点$P$がある。
また、点$B(-2,-4)$がある。

問1
関数$y=-\frac{1}{4}x^2$について、$x$の変域が$-6 \leqq x \leqq 1$のとき、$y$の変域を求めなさい。

問2
$\triangle PAB$が二等辺三角形となる$P$はいくつあるか、求めなさい。

問3
図2のように、関数$y=ax^2(a \gt0)$・・・②のグラフ上に、 $x$座標が$-3$である点$D$がある。
$P$の$x$座標が$4$のとき、四角形$PABD$の面積が$50$となるような$a$の値を求めなさい。
投稿日:2021.09.25

<関連動画>

【高校受験対策】数学-関数36

アイキャッチ画像
単元: #数学(中学生)#中3数学#2次関数
指導講師: とある男が授業をしてみた
問題文全文(内容文):
高校受験対策・関数36

Q.
右の図で曲線は関数$y=x^2$のグラフです。2点A・Bは、$x>0$の部分にあり、 それぞれの$y$座標は$1,16$です。また、点Pは$y$軸上の$1 \lt y \lt 16$の部分にあります。
次の各問に答えなさい。

①2点A、Bの座標をそれぞれ求めなさい。

②関数$y=x^2$で、$x$の変域が$-3 \leqq x \leqq 2$のとき、$y$の変域を求めなさい。

③△ABPの面積が$14cm^2$のとき、点Pの座標を求めなさい。
ただし、座標軸の単位の長さを$1cm$とします。
この動画を見る 

問題の背景を探る ハンガリーJr数学Olympic

アイキャッチ画像
単元: #複素数平面#円#三角関数#複素数#数学オリンピック
指導講師: 鈴木貫太郎
問題文全文(内容文):
$ a^2+b^2=81$
$x^2+y^2=121$
$ax+by=99$
$ay-bx=?$
これを解け.

ハンガリーjr数学オリンピック過去問
この動画を見る 

【中学での公式は…!?】因数分解:専修大学附属高等学校~全国入試問題解法

アイキャッチ画像
単元: #数学(中学生)#中3数学#式の計算(展開、因数分解)#高校入試過去問(数学)
指導講師: 高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
$ ab-3a-2b+6 $を因数分解しなさい.

専修大付属高校過去問
この動画を見る 

【スッキリと「分かる」…!】連立方程式:早稲田大学系属早稲田実業学校高等部~全国入試問題解法

単元: #数学(中学生)#中2数学#中3数学#連立方程式#式の計算(展開、因数分解)#高校入試過去問(数学)#早稲田大学系属早稲田実業学校高等部
指導講師: 高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
$x \gt 0,\;\;y \gt 0\;$のとき連立方程式を解け。
\begin{eqnarray}
\left\{
\begin{array}{l}
\left(x+y\right)^2+x^2+y^2+\left(x-y\right)^2=2019\\
\left(x+y\right)\left(x-y\right)=385
\end{array}
\right.
\end{eqnarray}
この動画を見る 

【まずは解くこと…!】文字式:明治大学付属明治高等学校~全国入試問題解法

アイキャッチ画像
単元: #数学(中学生)#中2数学#連立方程式#平方根#高校入試過去問(数学)#明治大学付属明治高等学校
指導講師: 高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
$ \begin{eqnarray}
\left\{
\begin{array}{l}
\sqrt2x+\sqrt7y=3 \\
\sqrt7x-\sqrt2y=-6
\end{array}
\right.
\end{eqnarray}$
のとき,$ y-x=\Box $

明治大学付属明治高等学校過去問
この動画を見る 
PAGE TOP