【高校受験対策/数学】関数55 - 質問解決D.B.(データベース)

【高校受験対策/数学】関数55

問題文全文(内容文):
高校受験対策・関数55

Q.
図1のように、関数$y=-\frac{1}{4}x^2$・・・①のグラフ上に点$A(4,-4)$があり、$x$軸上に点$P$がある。
また、点$B(-2,-4)$がある。

問1
関数$y=-\frac{1}{4}x^2$について、$x$の変域が$-6 \leqq x \leqq 1$のとき、$y$の変域を求めなさい。

問2
$\triangle PAB$が二等辺三角形となる$P$はいくつあるか、求めなさい。

問3
図2のように、関数$y=ax^2(a \gt0)$・・・②のグラフ上に、 $x$座標が$-3$である点$D$がある。
$P$の$x$座標が$4$のとき、四角形$PABD$の面積が$50$となるような$a$の値を求めなさい。
単元: #数学(中学生)#中3数学#2次関数
指導講師: とある男が授業をしてみた
問題文全文(内容文):
高校受験対策・関数55

Q.
図1のように、関数$y=-\frac{1}{4}x^2$・・・①のグラフ上に点$A(4,-4)$があり、$x$軸上に点$P$がある。
また、点$B(-2,-4)$がある。

問1
関数$y=-\frac{1}{4}x^2$について、$x$の変域が$-6 \leqq x \leqq 1$のとき、$y$の変域を求めなさい。

問2
$\triangle PAB$が二等辺三角形となる$P$はいくつあるか、求めなさい。

問3
図2のように、関数$y=ax^2(a \gt0)$・・・②のグラフ上に、 $x$座標が$-3$である点$D$がある。
$P$の$x$座標が$4$のとき、四角形$PABD$の面積が$50$となるような$a$の値を求めなさい。
投稿日:2021.09.25

<関連動画>

#62 #数検1級1次過去問 #因数分解

アイキャッチ画像
単元: #数学(中学生)#中3数学#式の計算(展開、因数分解)#数Ⅰ#数と式#式の計算(整式・展開・因数分解)#数学(高校生)
指導講師: ますただ
問題文全文(内容文):
次の式を係数が整数の範囲で因数分解せよ。
$x^6-14x^4+17x^2-4$

出典:数検1級1次
この動画を見る 

二次方程式の計算 大阪府

アイキャッチ画像
単元: #数学(中学生)#中3数学#2次方程式
指導講師: 数学を数楽に
問題文全文(内容文):
$(x-29)^2-3(x-30)-31=0$

大阪府
この動画を見る 

【高校受験対策/数学】死守-84

アイキャッチ画像
単元: #数学(中学生)#中1数学#正の数・負の数#方程式#平方根#2次方程式#文字と式
指導講師: とある男が授業をしてみた
問題文全文(内容文):
高校受験対策・死守84

①$4-(-6)×2$を計算しなさい。

➁$\frac{x-2y}{ 2 }-\frac{3x-y}{6}$を計算しなさい。

③$(x-3y)(x+4y)-xy$を計算しなさい。

④方程式$\frac{3}{2}x+1=10$を解きなさい。

⑤$a=\sqrt{3}-1$のとき、$a^2+2a$の値を求めなさい。

⑦紅茶が$450ml$、牛乳が$180ml$ある。紅茶と牛乳を$5:3$の 割合で混ぜてミルクティーをつくる。
紅茶を全部使ってミルクティーをつくるには、牛乳はあと何$ml$必要か求めなさい。

⑥方程式$2x^2-5x+1=0$を解きなさい。

⑧$n$は自然数である。
$\sqrt{3n}$が整数となる$n$の値のうち、2番目に 小さいものを求めなさい。

⑨$n$は自然数である。
$10\lt \sqrt{n} \lt11$を満たし、$\sqrt{7n}$が整数となる$n$の値を求めなさい。
この動画を見る 

【数学】中高一貫校問題集 幾何:三平方の定理:平面図形 内接円の半径2

アイキャッチ画像
単元: #数学(中学生)#中3数学#三平方の定理
教材: #TK数学#TK数学問題集2(幾何編)#中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
3辺の長さがAB=7cm,BC=8cm,CA=9cmの△ABCがあり、円Oは△ABCに内接している。
(1)Aから辺BCに引いた垂線の長さを求めなさい。
(2)円Oの半径を求めなさい。
この動画を見る 

関数:豊島岡女子学園高校~全国入試問題解法

アイキャッチ画像
単元: #数学(中学生)#中1数学#中2数学#中3数学#比例・反比例#1次関数#2次関数#高校入試過去問(数学)#豊島岡女子高等学校
指導講師: 高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
入試問題 豊島岡女子学園高等学校

$y=\displaystyle \frac{1}{2}x^2$と$y=\displaystyle \frac{a}{x}$について、
$x=\displaystyle \frac{1}{2}$から$x = 3$までの変化の割合が 等しいとき、
定数の$a$値を求めなさい。
この動画を見る 
PAGE TOP