【高校数学】明治大学の過去問~確率の問題演習~【大学受験】 - 質問解決D.B.(データベース)

【高校数学】明治大学の過去問~確率の問題演習~【大学受験】

問題文全文(内容文):
1から11までの番号をつけた11枚のカードから3枚を取り出すとき、
それらの番号の和が偶数となる確率は、
$\displaystyle \frac{□}{□}$で、それらの番号の積が偶数になる確率は、$\displaystyle \frac{□}{□}$
チャプター:

00:00 はじまり

00:22 問題

00:49 解説

06:09 まとめ

06:43 まとめノート

単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#明治大学#数学(高校生)
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
1から11までの番号をつけた11枚のカードから3枚を取り出すとき、
それらの番号の和が偶数となる確率は、
$\displaystyle \frac{□}{□}$で、それらの番号の積が偶数になる確率は、$\displaystyle \frac{□}{□}$
投稿日:2021.10.02

<関連動画>

整数問題の良問!どうやって解く? #Shorts #ずんだもん #勉強 #数学

アイキャッチ画像
単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#一橋大学#数学(高校生)
指導講師: 数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
直角三角形の3辺の長さがすべて整数のとき、面積は2の整数倍であることを示せ。
この動画を見る 

大学入試問題#349「定跡どおりの超良問」 獨協医科大学2019 #定積分

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{\sqrt{ 5 }}^{2\sqrt{ 3 }} \sqrt{ 1+(\displaystyle \frac{2}{x})^2 }\ dx$

出典:2019年獨協医科大学 入試問題
この動画を見る 

上智大 関数の最大最小

アイキャッチ画像
単元: #大学入試過去問(数学)#微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#学校別大学入試過去問解説(数学)#上智大学#数学(高校生)#数Ⅲ
指導講師:
問題文全文(内容文):
$f(x)=\displaystyle \frac{x^2+ax+b}{x^2-x+1}$の最大値が$3$、最小値が$\displaystyle \frac{1}{3}$

$(a,b)$の値を求めよ

出典:2005年上智大学 過去問
この動画を見る 

福田の1.5倍速演習〜合格する重要問題093〜中央大学2020年度理工学部第5問〜円周上の点と三角形五角形の面積

アイキャッチ画像
単元: #数Ⅰ#数Ⅱ#大学入試過去問(数学)#図形と計量#三角比への応用(正弦・余弦・面積)#三角関数#微分法と積分法#三角関数とグラフ#加法定理とその応用#学校別大学入試過去問解説(数学)#面積、体積#中央大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{5}$ 原点Oを中心とする半径1の円周上に2点
Q($\cos a$, $\sin a$), R($\cos(a+b), \sin(a+b)$)
をとる。ただし、a, bはa >0,b >0, a +b<$\frac{\pi}{2}$を満たす。また、点Qからx軸へ下ろした垂線の足を点Pとし、点Rからy軸へ下した垂線の足を点Sとする。
$\triangle$OPQの面積と$\triangle$ORSの面積の和をA, 五角形OPQRSの面積をBとおく。
(1)Aをaとbで表せ。
(2)bを固定して、aを0<a<$\frac{\pi}{2}$-bの範囲で動かすとき、Aがとりうる値の範囲をbで表し、Aが最大値をとるときのaの値をbで表せ。
(3)Bはa=$\frac{\pi}{8}$, b=$\frac{\pi}{4}$のときに最大値をとることを示せ。

2020中央大学理工学部過去問
この動画を見る 

大学入試問題#529「教科書に載ってそう」 北見工業大学(2012) #微積

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#不定積分#定積分#学校別大学入試過去問解説(数学)#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$f(x)=\cos\ x+\displaystyle \int_{0}^{x} e^{t-x}f(t)\ dt$のとき$f(x)$を求めよ

出典:2012年北見工業大学 入試問題
この動画を見る 
PAGE TOP