福田の数学〜慶應義塾大学看護医療学部2025第5問〜データの分析、平均と分散 - 質問解決D.B.(データベース)

福田の数学〜慶應義塾大学看護医療学部2025第5問〜データの分析、平均と分散

問題文全文(内容文):

$\boxed{5}$

(1)$20$人の生徒に、$5$点満点の小テストを行った。

次の度数分布表は全員のテストの得点である。

この小テストの得点の平均値は$\boxed{ハ}$、

分散は$\boxed{ヒ}$である。

また、生徒のうちの$1$名の得点が$\boxed{フ}$点から

$\boxed{ヘ}$点に変更された場合、

生徒全員の得点の平均値は$3$、分散は$2$となる。

(2)確率変数$X$と$Y$は独立であり、$X$の平均が$m_x$、

分散が$\upsilon_x$であるとする。

また、$a,b$は定数とする。このとき、$aX+bY$の

平均は$\boxed{ホ}$、分散は$\boxed{マ}$である。

(3)確率変数$X_1,X_2,\cdots,X_n,X_{n+1}$は互いに

独立であり、

$T_n=\dfrac{1}{n}(X_1+X_2+\cdots + X_n)$

の平均が$m$、分散が$\upsilon$であるとする。

$X_{n+1}$の平均が$m'$、分散が$\upsilon'$であるとき、

$T_{n+1}=\dfrac{1}{n+1}(X_1+X_2+\cdots +X_n+X_{n+1})$

の平均は$\boxed{ミ}$、分散は$\boxed{ム}$である。

図は動画内参照

$2025$年慶應義塾大学看護医療学部過去問題
単元: #数Ⅰ#大学入試過去問(数学)#データの分析#データの分析#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):

$\boxed{5}$

(1)$20$人の生徒に、$5$点満点の小テストを行った。

次の度数分布表は全員のテストの得点である。

この小テストの得点の平均値は$\boxed{ハ}$、

分散は$\boxed{ヒ}$である。

また、生徒のうちの$1$名の得点が$\boxed{フ}$点から

$\boxed{ヘ}$点に変更された場合、

生徒全員の得点の平均値は$3$、分散は$2$となる。

(2)確率変数$X$と$Y$は独立であり、$X$の平均が$m_x$、

分散が$\upsilon_x$であるとする。

また、$a,b$は定数とする。このとき、$aX+bY$の

平均は$\boxed{ホ}$、分散は$\boxed{マ}$である。

(3)確率変数$X_1,X_2,\cdots,X_n,X_{n+1}$は互いに

独立であり、

$T_n=\dfrac{1}{n}(X_1+X_2+\cdots + X_n)$

の平均が$m$、分散が$\upsilon$であるとする。

$X_{n+1}$の平均が$m'$、分散が$\upsilon'$であるとき、

$T_{n+1}=\dfrac{1}{n+1}(X_1+X_2+\cdots +X_n+X_{n+1})$

の平均は$\boxed{ミ}$、分散は$\boxed{ム}$である。

図は動画内参照

$2025$年慶應義塾大学看護医療学部過去問題
投稿日:2025.05.04

<関連動画>

【初見では固まる…!】平方根:慶応義塾高等学校~全国入試問題解法

単元: #数学(中学生)#中3数学#平方根#数Ⅰ#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#高校入試過去問(数学)#数学(高校生)#慶應義塾高等学校
指導講師: 高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
$次の式を計算せよ。$
$\dfrac{1}{(1+\sqrt{2}+\sqrt{3})^2}+\dfrac{1}{(1+\sqrt{2}-\sqrt{3})^2}$
この動画を見る 

【高校数学】有名角の面白い覚え方~数学の先生は怒らないでね~【数学Ⅰ】

アイキャッチ画像
単元: #数Ⅰ#図形と計量#三角比(三角比・拡張・相互関係・単位円)#数学(高校生)
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
有名角の面白い覚え方紹介動画です
この動画を見る 

福田の数学〜早稲田大学2021年人間科学部第7問〜双曲線と図形問題

アイキャッチ画像
単元: #数Ⅰ#大学入試過去問(数学)#平面上の曲線#図形と計量#2次曲線#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{7}}$ 原点を$O$とする座標平面上で、2点$(\sqrt5,0),$$(-\sqrt5,0)$を焦点とし、2点$A(1,0),$$A'(-1,0)$を頂点とする双曲線を$H$とする。$H$の方程式を$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1$と表すとき、$a^2=\boxed{\ \ ネ\ \ },$ $b^2=\boxed{\ \ ノ\ \ }$である。双曲線Hの漸近線のうち、傾きが正であるものの方程式は$y=\boxed{\ \ ハ\ \ }x$である。$点P(p,q)$は双曲線$H$の$第1象限$の部分を動く点とする。$点P$から$x軸$に下ろした垂線の足を$Q$、$直線PQ$と$双曲線H$の漸近線との交点のうち、$第1象限$にあるものを$R$とする。$点P$における$H$の接線と$直線x=1$との交点を$M$とし、$直線OM$と$直線AP$との交点を$N$とする。$三角形OQR$の面積を$S$、$三角形OAN$の面積を$T$とするとき、$\frac{T}{S}$は、$p=\boxed{\ \ ヒ\ \ }$のとき、最大値$\frac{\boxed{\ \ フ\ \ }}{\boxed{\ \ ヘ\ \ }}$をとる。

2021早稲田大学人間科学部過去問
この動画を見る 

ざ・息抜き

アイキャッチ画像
単元: #数Ⅰ#数Ⅱ#2次関数#2次方程式と2次不等式#指数関数と対数関数#対数関数#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$ \sqrt{2022}x^{\log_{2022}x}=x^2$の解の積の下3桁を求めよ.
この動画を見る 

灘高校の因数分解

アイキャッチ画像
単元: #数Ⅰ#数と式#式の計算(整式・展開・因数分解)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
展開せよ
$(a^2+b^2-c^2)^2$
因数分解せよ
$a^4+b^4+c^4-2a^2b^2-2b^2c^2-2c^2a^2$

灘高等学校
この動画を見る 
PAGE TOP