【高校数学】弧度法を簡単に分かりやすく~ラジアンとは~ 4-1.5【数学Ⅱ】 - 質問解決D.B.(データベース)

【高校数学】弧度法を簡単に分かりやすく~ラジアンとは~ 4-1.5【数学Ⅱ】

問題文全文(内容文):
弧度法を簡単にわかりやすく説明した動画です
チャプター:

00:00 はじまり

00:20 解説スタート

01:36 まとめ

01:55 まとめノート

単元: #数Ⅰ#図形と計量#数学(高校生)
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
弧度法を簡単にわかりやすく説明した動画です
投稿日:2021.05.21

<関連動画>

【高校数学】2次関数の最大最小の応用~文章になるだけ~ 2-5【数学Ⅰ】

アイキャッチ画像
単元: #数Ⅰ#2次関数#2次関数とグラフ#数学(高校生)
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
1⃣
幅20cmの金属板を、動画内の図のように、両端から等しい長さだけ直角に折り曲げて、
断面が長方形状の水路を作る。
このとき、断面積が最大になるようにするためには、端から何cmのところで折り曲げれば
よいか。また、その断面積の最大値を求めよ。


2⃣
直角を挟む2辺の長さの和が8である直角三角形のうち、斜辺の長さが 最小である直角三角形
の3辺の長さを求めよ。
この動画を見る 

【どこが出る??】学年1位を取り続けた人間が中間テストで出やすいところを17分で全て紹介します!〔高校数学、数学〕

アイキャッチ画像
単元: #数Ⅰ#2次関数#2次方程式と2次不等式#数学(高校生)
指導講師: 3rd School
問題文全文(内容文):

1.以下の文字式を[]内の文字について降べきの順に整理しなさい
 (1)$a^3+a^2+a+4a^4+6a^6-3a^4$ [a]
 (2)$x^2+2y^2+z^2-xy+yz+zx$ [z]

2.$A=x^2-ax+1,B=a^2+3ax+2$のとき$A-${$3B+(A-B)$}を計算しなさい。



1.次の式を計算しなさい
 $(-2ab^3)^3$

2.次の式を展開しなさい
 (1)$(a-3b)^2$
 (2)$(2+3a)(2-3a)$
 (3)$(a+5)(a-6)$

3.次の式を展開しなさい
 (1)$(x^2+2x+1)^2$
 (2)$(4a^2+9)(2a-3)(2a+3)$



1.次の式を因数分解しなさい
 (1)$2a^2x-4ab$
 (2)$x^2+6x+9$
 (3)$x^2-5x+6$
 (4)$16a^2-9b^2$

2.次の式を因数分解しなさい
 (1)$x^2+x+\displaystyle \frac{1}{4}$
 (2)$4x^2-16$



1.次の式を因数分解しなさい
 (1)$2x^2-5x-3$
 (2)$9x^2+3ab-2b^2$
 (3)$3x^2-11ab-4b^2$
 (4)$8x^2-14xy-15y^2$

2.次の式を因数分解しなさい
 (1)$4a^2-b^2-2bc-c^2$
 (2)$(x+y+1)(x+y+3)-15$
 (3)$2x^2-2y^2+3xy+x+2y$
 (4)$(x+y)^2-4(x+y)+4$



1.次の式を展開しなさい
 (1)$(2x-1)^3$
 (2)$(2x+3)(4x^2+6x+9)$

2.次の式を因数分解しなさい
 (1)$1-8a^3$
 (2)$216x^3+125y^3$



1.次の循環小数を分数で表せ
 (1)$0.\dot{ 9 }$
 (2)$0.\dot{ 8 }\dot{ 3 }$



1.次の値を求めなさい
 (1)$|\sqrt{ 3 }-\sqrt{ 5 }|$
 (2)$|1|-|-2|$
 (3)$|\sqrt{ 2 }+\sqrt{ 3 }||\sqrt{ 2 }-\sqrt{ 3 }|$

2.次の値を求めなさい
 (1)$\sqrt{ 32 }+\sqrt{ 128 }$
 (2)$(2+\sqrt{ 2 })^2$
 (3)$\sqrt{ 3+2\sqrt{ 2 } }$



1.次の式を簡単にしなさい
 (1)$\displaystyle \frac{2}{\sqrt{ 5 }}$

 (2)$\displaystyle \frac{1+\sqrt{ 6 }}{\sqrt{ 3 }}$

 (3)$\displaystyle \frac{2-\sqrt{ 2 }}{2+\sqrt{ 2 }}$


2.$2\sqrt{ 2 }$の整数部分を$a$,小数部分を$b$とするとき、次の式の値を求めなさい
 (1)$a$
 (2)$b$
 (3)$\displaystyle \frac{a}{b}$



1.$x=\displaystyle \frac{2-\sqrt{ 2 }}{2+\sqrt{ 2 }},y=\displaystyle \frac{2+\sqrt{ 2 }}{2-\sqrt{ 2 }}$のとき、次の式の値を求めなさい
 (1)$x+y,xy$
 (2)$x^2+y^2$
 (3)$x^3+y^3$



1.$a \gt b$のとき、次の□にあてはまる不等号を入れなさい。
 (1)$-2a+5□-2b+5$
 (2)$3a□3b$


2.次の不等式を解きなさい
 (1)$5x+6 \lt 11$
 (2)$-6x+1 \geqq 19$
 (3)$3(2x+1) \gt -(4x+5)+2$



1.次の連立不等式を解きなさい
 (1)$\begin{eqnarray}
\left\{
\begin{array}{l}
3x + 2 \lt 9-x \\
x + 4 \geqq 3x
\end{array}
\right.
\end{eqnarray}$

 (2)$3x-9 \lt x-3 \lt 6x+7$
 (3)$0.2x-0.1 \leqq 0.1x+0.7 \lt -0.1x+2.1$



1.次の等式と不等式を解きなさい
 (1)$|2x-5|=3$
 (2)$|3x-1| \lt 1$
 (3)$|3x-2| \geqq x+2$



1.以下の集合に関する問に答えなさい
 (1)3以下の自然数からなる集合$A$を書き並べて表しなさい
 (2)正の偶数からなる集合$B$を式を用いた形で表せ
 (3)1けたの4の倍数からなる集合$C$の部分集合をすべて書きなさい

2.$D=${$x|x$は$1$けたの奇数}とするとき、次の□に$ \in $または$ \notin $を入れなさい
 (1)$2□D$
 (2)$7□D$
 (3)$13□D$



1.全体集合$U=${$1,2,3,4,5,6,7,8,9$}の部分集合$A,B$について、
 $A=${$1,2,4,6,8$}
 $B=${$1,3,6,9$}
 のとき、次の集合を求めなさい
 (1)$A \cap B$
 (2)$A \cup B$
 (3)$\overline{A \cap B}$
 (4)$\overline{\overline{A} \cup B}$



1.次の命題の真偽を調べなさい
 (1)実数$a$について$a \geqq 2$ならば$a \gt 0$
 (2)自然数$m,n$について、$mn$が偶数ならば$m,n$はともに偶数

2.$n^2$が$3$の倍数ならば、$n$は$3$の倍数であることを証明しなさい
この動画を見る 

【For you動画-17】  数Ⅰ-集合

アイキャッチ画像
単元: #数Ⅰ#数と式#集合と命題(集合・命題と条件・背理法)#数学(高校生)
指導講師: とある男が授業をしてみた
問題文全文(内容文):
◎U={x1xは、10以下の自然数}を全体集合
Uの部分集合A={1.2.5.6.9 }
B={3.8.9.10},C={1.3.4.9.10〕とする。

①$A \cup B=$
②$A \cap B$
③$\overline{ A } \cap B=$
④$\overline{ B \cup C}=$
⑤$(\overline{ A } \cap B)\cup C=$

◎◎U={x1xは10以下の自然数」を全体集合 とする。Uの部分集合A、Bについて、
$\overline{ A } \cap B ${4,5,10},$A \cap \overline{ B } ${3,8}
$\overline{ A } \cap \overline{ B } ${1,6,9}である。

⑥$A \cap B=$
⑦$A=$
⑧$A \cup B=$
この動画を見る 

高校で習う因数分解

アイキャッチ画像
単元: #数Ⅰ#数と式#式の計算(整式・展開・因数分解)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
$2x^2+5xy+3y^2-3x-5y-2$を因数分解
この動画を見る 

【数検準2級】高校数学:数学検定準2級2次:問2

アイキャッチ画像
単元: #数Ⅰ#数学検定・数学甲子園・数学オリンピック等#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#数学検定#数学検定準2級#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
問2.次の問いに答えなさい。
(3) 正の数xに対して、xを超えない最大の整数をxの整数部分、xからxの整数部分を引いた値をxの小数部分といいます。
たとえば$\sqrt2(=1.414…)$については、$1\lt\sqrt2\lt2$より、$\sqrt2$の整数部分は1、$\sqrt2$の小数部分は$\sqrt2-1$となります。
$\sqrt5$の小数部分をaとするとき、$a^2+4a$の値を求めなさい。
この動画を見る 
PAGE TOP