数学「大学入試良問集」【14−7ベクトルの等式と円】を宇宙一わかりやすく - 質問解決D.B.(データベース)

数学「大学入試良問集」【14−7ベクトルの等式と円】を宇宙一わかりやすく

問題文全文(内容文):
$\triangle ABC$の外接円の中心を$O$とし、半径を1とする。
$13\overrightarrow{ OA }+12\overrightarrow{ OB }+5\overrightarrow{ OC }=\vec{ 0 }$であるとき、次の問いに答えよ。
(1)内積$\overrightarrow{ OA }・\overrightarrow{ OB }$を求めよ。
(2)$\triangle OAB,\triangle OBC,\triangle OCA$の面積を求めよ。
単元: #大学入試過去問(数学)#平面上のベクトル#ベクトルと平面図形、ベクトル方程式#学校別大学入試過去問解説(数学)#山梨大学#数学(高校生)#数C
指導講師: ハクシ高校【数学科】良問演習チャンネル
問題文全文(内容文):
$\triangle ABC$の外接円の中心を$O$とし、半径を1とする。
$13\overrightarrow{ OA }+12\overrightarrow{ OB }+5\overrightarrow{ OC }=\vec{ 0 }$であるとき、次の問いに答えよ。
(1)内積$\overrightarrow{ OA }・\overrightarrow{ OB }$を求めよ。
(2)$\triangle OAB,\triangle OBC,\triangle OCA$の面積を求めよ。
投稿日:2021.10.16

<関連動画>

【数学B/平面ベクトル】垂直なベクトル・単位ベクトル

アイキャッチ画像
単元: #平面上のベクトル#平面上のベクトルと内積#数学(高校生)#数C
指導講師: 【ゼロから理解できる】高校数学・物理
問題文全文(内容文):
ベクトル$\vec{ a }=(\sqrt{ 3 },-1)$に垂直な単位ベクトル$\vec{ e }$を求めよ。
この動画を見る 

【数B】ベクトル:2020年第2回高2K塾記述模試の第7問を解いてみた!

アイキャッチ画像
単元: #平面上のベクトル#平面上のベクトルと内積#ベクトルと平面図形、ベクトル方程式#数学(高校生)#数C
指導講師: 理数個別チャンネル
問題文全文(内容文):
三角形OABがあり、OA=2,OB=1,∠AOB=120°である。辺OAの中点をCとし、線分ABを1:2に内分する点をDとする。またOB=a,OB=bとする
(1)OC、ODをそれぞれa,bを用いて表せ。また、内積a・bの値を求めよ。
(2)OH=kOD(kは実数)と表される点Hがある。CT⊥ODとなるとき、kの値を求め、OHをa,bを用いて表せ。
(3)直線ODに関して点Cと対称な点をEとする。OEをa,bを用いて表せ。
(4)直線AB上にAと異なる点Pを∠AOD=∠PODとなるようにとる。OPをa,bを用いて表せ。
この動画を見る 

【数学B/平面ベクトル】ベクトル方程式の総まとめ

アイキャッチ画像
単元: #平面上のベクトル#ベクトルと平面図形、ベクトル方程式#数学(高校生)#数C
指導講師: 【ゼロから理解できる】高校数学・物理
問題文全文(内容文):
(1)
点$A(2,4),\vec{ d }=(1,3)$のとき、点$A$を通り、$\vec{ d }$が方向ベクトルである直線の媒介変数表示を、媒介変数を$t$として求めよ。
また、$t$を消去した式で表せ。


(2)
2点$A(-1,2),$ $B(3,5)$を通る直線の媒介変数表示を、媒介変数を$t$として求めよ。


(3)
点$A(-1,2),\vec{ n }=(3,4)$のとき、点$A$を通り、$\vec{ n }$が法線ベクトルである直線の方程式を求めよ。


(4)
点$A(1,2)$を中心とし、半径が$3$である円の方程式を、ベクトルを利用して求めよ。
この動画を見る 

【数B】平面ベクトル:ベクトルの基本③ 絶対値の最大最小は2乗で考えよ

アイキャッチ画像
単元: #平面上のベクトル#平面上のベクトルと内積#数学(高校生)#数C
指導講師: 理数個別チャンネル
問題文全文(内容文):
tは実数とする。
aベクトル=(2,1), bベクトル=(3,4)に対して
$\vert a+tb\vert $は$t=□$のとき最小値$□$を取る
この動画を見る 

【位置ベクトルっていつ使うの?】ベクトルの基礎と考え方を解説!〔数学、高校数学〕

アイキャッチ画像
単元: #平面上のベクトル#ベクトルと平面図形、ベクトル方程式#数学(高校生)#数C
指導講師: 3rd School
問題文全文(内容文):
ベクトルの基礎と考え方について解説します。
この動画を見る 
PAGE TOP