【日本最速解答速報】2024年明治薬科大学薬学部薬学科(6年制)公募制推薦 数学解答速報【TAKAHASHI名人】 - 質問解決D.B.(データベース)

【日本最速解答速報】2024年明治薬科大学薬学部薬学科(6年制)公募制推薦 数学解答速報【TAKAHASHI名人】

問題文全文(内容文):
大学の正解発表ではなく、あくまで当チャンネルの講師が独自に解説をしているものですので、万が一内容に間違いがございましたらご容赦ください。
チャプター:

0:00 大問1(1)
2:38 大問1(2)
4:13 大問1(3)
6:03 大問2
14:25 大問3
20:56 大問4
29:38 エンディング

単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
大学の正解発表ではなく、あくまで当チャンネルの講師が独自に解説をしているものですので、万が一内容に間違いがございましたらご容赦ください。
投稿日:2023.11.23

<関連動画>

福田の数学〜上智大学2023年TEAP利用型理系第3問Part1〜容器に水を入れる

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#上智大学#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
$\Large{\boxed{3}}$ $\pi$を円周率とする。$f(x)$=$x^2(x^2-1)$とし、$f(x)$の最小値を$m$とする。
(1)$m$=$\displaystyle\frac{\boxed{\ \ シ\ \ }}{\boxed{\ \ ス\ \ }}$ である。
(2)$y$=$f(x)$で表される曲線を$y$軸の周りに1回転させてできる曲面でできた器に、$y$軸方向から静かに水を注ぐ。
(i)水面が$y$=$a$(ただし$m$≦$a$≦0)になったときの水面の面積は$\boxed{\ \ セ\ \ }$である。
(ii)水面が$y$=0になったときの水の体積は$\displaystyle\frac{\boxed{\ \ ソ\ \ }}{\boxed{\ \ タ\ \ }}\pi$ である。
(iii)上方から注ぐ水が単位時間あたり一定量であるとする。水面が$y$=0に達するまでは、水面の面積は、水を注ぎ始めてからの時間の$\displaystyle\frac{\boxed{\ \ チ\ \ }}{\boxed{\ \ ツ\ \ }}$ 乗に比例して大きくなる。
(iv)水面が$y$=2になったときの水面の面積は$\boxed{\ \ テ\ \ }\pi$であり、水の体積は$\displaystyle\frac{\boxed{\ \ ト\ \ }}{\boxed{\ \ ナ\ \ }}\pi$ である。
この動画を見る 

大学入試問題「解法によっては、減点の可能性?しかし回避可能(コメント欄参照)」 信州大学(2022) #定積分1

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#数学(高校生)#信州大学#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{\frac{\pi}{2}}^{\frac{2}{3}\pi} \displaystyle \frac{1}{1+\cos\ x} dx$

出典:2022年信州大学 入試問題
この動画を見る 

一橋大 確率

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#確率#数列#漸化式#学校別大学入試過去問解説(数学)#一橋大学#数学(高校生)#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
サイコロを$n$回投げ、$k$回目の目を$a_k$。
$S_n=\displaystyle \sum_{k=1}^n 10^{n-k}a_k$

次の確率を求めよ。
$S_n$が
(1)4の倍数
(2)6の倍数
(3)7の倍数

出典:2013年一橋大学 過去問
この動画を見る 

福田の数学〜大阪大学2023年理系第3問〜三角方程式の解の個数

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#図形と方程式#円と方程式#微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#学校別大学入試過去問解説(数学)#大阪大学#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{3}$ Pを座標平面上の点とし、点Pの座標を(a,b)とする。-π≦t≦πの範囲にある実数tのうち、曲線y=$\cos x$上の点(t, $\cos t$)における接線が点Pを通るという条件をみたすものの個数をN(P)とする。N(P)=4かつ0<a<πをみたすような点Pの存在範囲を座標平面上に図示せよ。

2023大阪大学理系過去問
この動画を見る 

福田の数学〜京都大学2023年文系第4問〜部分和を含んだ漸化式の解法

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#漸化式#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)#数B
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{4}$ 数列{$a_n$}は次の条件を満たしている。
$a_1$=3, $a_n$=$\frac{S_n}{n}$+$(n-1)・2^n$ (n=2,3,4,...)
ただし、$S_n$=$a_1$+$a_2$+...+$a_n$である。このとき、数列{$a_n$}の一般項を求めよ。

2023京都大学文系過去問
この動画を見る 
PAGE TOP